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SUMMARY

The complexity of modern embedded systems increases as they incorporate new concerns such as distribu-
tion and mobility. These new features need to be considered as early as possible in the software development
life cycle. Model driven engineering promotes an intensive use of models and is now widely seen as a solu-
tion to master the development of complex systems such as embedded ones. Component-based software
engineering is another major trend that gains acceptance in the embedded world because of its properties
such as reuse, modularity, and flexibility.

This article proposes the Flex-eWare component model (FCM) for designing and implementing modern
embedded systems. The FCM unifies model driven engineering and component-based software engineering
and has been evaluated in several application domains with different requirements: wireless sensor networks,
distributed client/server applications, and control systems for electrical devices. This approach highlights a
new concept: flexibility points that arise at several stages of the development process, that is, in the model
(design phase), in the execution platform, and during the execution itself. This flexibility points are captured
with model libraries that can extend the FCM. Copyright © 2011 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Embedded systems tend to be more and more complex and incorporate many different concerns
such as distribution and mobility. This raises a need for new features to be considered during their
development such as architecture description, deployment strategies, and extensibility or to consider
run-time adaptation in such systems.

From a software engineering point of view, model driven engineering (MDE) is now widely seen
as a solution to master the development of complex systems such as embedded systems. In such
approaches, development relies on models that are able to support code generation to ease and
secure implementation on the one hand and to enable reasoning and to check properties such as
schedulability on the another hand.
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However, current notations to support the design of embedded systems do not consider yet the
new required features that could help the designer to cope with the new needs of embedded sys-
tems. In particular, embedded systems have to be flexible. This is critical because engineers will
have, sooner or later, to cope with various types of embedding constraints (e.g., the one of systems
on chip and the one of workstations) in the same application. So, flexibility can help in the design of
embedded systems either at design-time (software product line (SPL) or configuration/deployment)
or at run time (adaptability).

The Flex-eWare project [1] aims at developing a solution to cope with flexibility in the design
of embedded and distributed systems. This project gathered companies (Orange Labs, Schneider
Electric, Teamlog, Thales, Trialog) and academics (CEA, INRIA, Telecom ParisTech, Université
P. & M. Curie) from 2007 to 2010. This article presents the results of this project from both the
conceptual point of view (what has to be set up in the specification) and the development process.
We first elaborate a conceptual component model: Flex-eWare component model (FCM). Then we
design some mappings to several technologies to assess its generality.

This article is structured as follows. Section 2 identifies the problems to be tackled by future
embedded and distributed systems. Section 3 presents some existing (and usually partial) solutions
proposed in the area and outlines the main concepts considered to elaborate FCM. Section 4 details
our component models and its specificities. Section 5 illustrates the use of FCM in three different
application domains with different underlying technologies. Finally, Section 6 concludes this article
and proposes directions for future work.

2. REQUIREMENTS

This section identifies the set of requirements related to a model-based design approach for com-
plex systems. We do so by studying the domains targeted by our work (Section 2.1). In particular,
we emphasize the management of flexibility that is a key issue for future embedded and distributed
systems. We then identify how flexibility management should impact the software engineering life
cycle (Section 2.2) and introduce our contribution to these challenges (Section 2.3).

2.1. Requirements for future application domains

Let us first provide examples of current and future needs on software flexibility in two application
domains that are emblematic of the domains targeted in our work: customer premise equipment
(CPE) and automotive systems. Future needs are based on a prospective vision of these domains.

Telecommunication CPE domain. The CPE market in telecommunication refers to products
installed at home, connected to an external network, and operated by business operators. Typical
examples are Internet modems and ‘boxes’. Such systems provide multiple services such as Internet
access, IP TV, Video on Demand, and voice over IP.

Today, business operators need software architectures as well as deployment features suitable to
maintain, update, extend, and configure applications for CPE such as new video encoders. Because
of the various home network solutions [2, 3], they also need to support nonfunctional requirements
such as QoS management. Both types of functions are needed, for instance, to replace a security
component within an existing video encoder. Operators also have to cope with numerous devices
(e.g., millions of Internet boxes) and therefore need features for scalable remote administration [4],
deployment [5], and configuration inspection [6].

In the future, the market will move toward richer services as well as more sophisticated services
involving multiple stakeholders. For instance, such services could be aggregators. Competing oper-
ators may thus coexist and have to share the management of CPE devices that would then have
to cope with dynamically changing environments. In this context, service-oriented architecture [7]
approaches will be required to enable new software components to be dynamically downloaded,
deployed, registered, and linked to existing ones (possibly designed by other operators).
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Automotive systems. The automotive industry is currently targeting supply environments based on
a vehicle manufacturer–centric relationship involving components from various sources to ensure
both lower costs and lower risks of supply shortage. They are also concerned by stringent contrac-
tual and liability obligations. So, automotive systems need to support complex product diversity
because either vehicles come with customer options (e.g., type of engine, accessories, etc.) or the
assembly of vehicles involves multisourcing options.

Software is now a major part of these supply environments. It has been reported [8] that the devel-
opment of automotive systems has already reached 40% of the total vehicle development cost, with
a major part dedicated to the software part. Diversity of sources is ensured using software struc-
turing standards such as Automotive Open System Architecture (AUTOSAR) [9], which allow the
construction of systems based on the reuse of both applications and system components.

Some vehicles today include up to 70 electronic control units (ECUs). It is anticipated that
for costs issues, vehicle functions will soon be deployed over a smaller number of ECUs. For
instance, four cluster functions could be foreseen: power-train, body, safety, and multimedia. So,
software components will have to be reused in configurations involving modifications of nonfunc-
tional properties (NFPs). Moreover, an increasing number of external multimedia functions will
also be installed in vehicles such as navigation systems, road tolling systems, or insurance systems
based on usage. Integration of such functions will require more dynamicity in the underlying exe-
cution environment. This will have an impact on the way software components are developed and
deployed.

Summary. On the basis of these two examples, some directions are emerging for software embedded
systems. First, software flexibility must be considered all over the product life cycle (i.e., design,
development, deployment, and during execution; see next section). We call flexibility points the spe-
cific cut-points during the development phases when variants are available to engineers (and thus
flexibility of solutions can be investigated).

Second, flexibility must cope with the following needs: suitable software structuring, management
of nonfunctional aspects, management of extensibility, and management of dynamically changing
environments.

2.2. Requirements for future embedded systems

Section 2.1 identified future and near-future needs shared by both the automotive and CPE domains.
These needs can be easily extended to other domains of embedded and distributed systems. To
identify how software engineering should satisfy these requirements, we explore the way they are
reflected throughout the product development life cycle. To simplify our study, we consider a rather
ad hoc software life cycle, coarsely based on the Waterfall model [10] and composed of the following
phases: design, development, deployment, and execution.

We extract a list of requirements to be fulfilled by embedded software engineering models. This
list is described extensively in the remainder of this section and is summarized in Table I. Columns
refer to the software life cycle phases, and rows to general needs. For example, the cell III.MD at
the intersection of column III. Deployment and row Management of dynamicity (MD) provides the
requirements for dynamicity during the deployment phase.

2.2.1. Requirements for the design phase. This phase deals with the specification of software
requirements. In our case, this corresponds to the process of planning a solution satisfying these
requirements. Designers may describe behavioral and structural aspects of a design solution using
standard languages such as Unified Modeling Language (UML), formal languages such as B [11], or
Architecture Description Languages (ADLs) [12] such as Wright [13]. Requirements for the design
phase are reported as follows:

� I.SA: Structuring and consistency checks between system components. This includes features
such as encapsulation with arbitrary granularity, strict separation of design aspects, modu-
larity and hierarchy support to provide different system views at different abstraction levels.
By expressing component needs and relate them to the associated provided services on the
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Table I. Requirements over the software life cycle.

Needs Software life cycle

I. Design II. Development III. Deployment IV. Execution

Software StructuringC Reuse of modules C Safe versioning and Traceability of
architecture consistency checks support for multiple publishingC security software structure at
(SA) between system software providers provisioning run-time

components
Nonfunctional Separation of Separation of Support of existing Fault tolerance
requirements concernsC code concerns (SoC) deployment plans
(NF) generation

Extensibility Software product Reuse of legacy code Support of existing Systems open to
(EX) lines (SPL) support C support of several deployment structural/behavioral

for models languages technologies changes

Management Modeling of Environment-dependent Support of activities Support of unforeseen
of dynamicity operating modes versions of modules related to changes context changesC
(MD) on running systems introspection

The main objectives of Flex-eWare are outlined in italic.

invoked side, it is possible to ensure several consistency properties early in the design phase.
For instance, it is possible to check that a client-side maximum allowed delay is compatible
with a server-side maximum guaranteed delay.
� I.NF: Separation of concerns (SoC) and code generation. Functional and nonfunctional aspects

of a system should be modeled separately at the appropriate development step. Domain-specific
concerns may be abstracted and thus captured at a high level. Then code generators are able to
generate the appropriate code dealing with nonfunctional requirements for the targeted domain
(similarly to aspect-oriented programming [14]).
� I.EX: SPLs support for models. Current modeling languages propose features tailored for par-

ticular application domains. When unifying several languages, there are two ways to handle
these variations: (i) building a unified model or (ii) build a model with flexibility points. These
flexibility points enable the definition of extensions to tailor the original language to a specific
need. Thus, the specification language can be designed and adapted as in an SPL.
� I.MD: Modeling of operating modes. Dynamic evolution of a system can be expressed, thanks

to the definition of several operating modes and the interaction between these modes. This
solution has been adopted in Architecture Analysis and Design Language (AADL) V2 [15].
Association of mode switch with mechanisms such as introspection (configuration discovery)
or intercession (change on system configuration) is handled via an appropriate run-time.

2.2.2. Requirements for the development phase. This phase deals with the concrete implementation
of the designed system. It also contains testing, debugging, validation, and integration of the pro-
duced systems. In some cases, design standards may require some characteristics of development
process, such as code modularity or programming language. Requirements for the development
phase are reported as follows:

� II.SA: Reuse of modules and support for multiple software providers. Reuse of independently
developed software source code modules decreases the development effort and eases mainte-
nance tasks through sharing of maintenance-operations experiences on independent systems.
This has a direct impact over business-related metrics and, in particular, the time-to-market.

System modules may also be implemented in parallel by several providers. Such an approach
is typically used in the automotive domain where competing suppliers provide modules to more
than one integrator. This requires specific support in the involved modeling languages as well
as in the underlying run-time (e.g., AUTOSAR in automotive systems).
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� II.NF: SoC at a source code level. SoC is a key principle in software development. Several
concerns such as run-time error treatment and communication protocols in distributed sys-
tems could be identified and separated to reduce complexity. Then they are combined by the
tool chain to produce the system implementation. This approach is also similar to the one of
aspect-oriented programming.
� II.EX: Reuse of legacy code and support of several languages. Complex systems may integrate

pre-existing modules built using different development paradigms or no paradigm at all. Any
new model or framework must consider this case and provide appropriate tools and mechanisms
to integrate legacy code. There is a similar problem with programming languages because
different components may have been implemented using several languages.
� II.MD: Environment-dependent versions of modules. There is a need to manage several imple-

mentations of a given module, each one being able to cope with some nonfunctional require-
ments. For instance, several versions of a MPEG-4 decoder may be built for different energy
consumption profiles.

2.2.3. Requirements for the deployment phase. This phase deals with releasing, packaging, and
installing of a system to enable its use by customers. Requirements for the deployment phase are
reported as follows:

� III.SA: Safe versioning, publishing and security provisioning. There is a need to maintain con-
sistency between versions of the various components that compose a system. For instance,
backward compatibility of a component induces constraints on the versions of the depend-
ing software pieces. When publishing such systems, some dynamic linking mechanisms may
be required. These mechanisms can be based on the description of provided and required,
similar to Open Services Gateway initiative (OSGi) manifests. The identification of critical
modules is important to enable safe deployment policies and protect intellectual property. For
instance, AUTOSAR defines mechanisms to identify faulty components and protect modules
implementation.
� III.NF: Multiple deployment policies/models support. Several deployment plans could be

defined to match with several configuration requirements. For instance, according to the com-
ponents installed in the host platform and the network capabilities, source code or binary
content delivery may be considered.
� III.EX: Support of existing deployment technologies such as package managers, content

delivery technologies, and standard file formats.
� III.MD: Support of activities related to changes on running systems, such as actions coor-

dination, secured transmissions, and new contents (data and/or code) delivery. For instance,
regarding content delivery, we identify two approaches commonly used in the CPE domain.
In the push approach, newly released software is push onto the device by the operator. In that
case, delta upload allowed by component paradigm is of paramount interest; thanks to scalabil-
ity when millions of devices have to be simultaneously upgraded. In the pull approach, devices
require new functionalities according to their needs, for example, the universal plug and play
(UPnP) service discovery mechanisms.

2.2.4. Requirements for the execution phase. This phase should be reduced to the interpretation of
computer program instructions by a physical processor or a virtual machine. It also deals with other
activities such as maintenance, update, adaptation, and evolution of the system. Requirements for
the execution phase are reported as follows:

� IV.SA: Traceability of software structure at run-time. Allowing identification of submodules
that are prone to change, by establishing an isomorphism between executing code and the
model. By these meanings, software behavioral modifications may be expressed as structural
modifications, easing localized maintenance, adaptation, and evolution activities.
� IV.NF: Fault tolerance. Changes in the execution environment may lead to new nonfunctional

requirements. For instance, bad data retrieved from a broken sensor should be handled and
the source redirected to obtain appropriate data from other sources (e.g., via the network). In
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that case, a new communication link must be dynamically established to maintain the system
reliability.
� IV.EX: Systems open to structural/behavioral changes. Execution run-time must be able to

dynamically support structural and/or behavioral extensions. Flexibility points can be used to
define run-time restrictions with regard to these changes.
� IV.MD: Support of unforeseen context changes and introspection. In some case, system dynam-

icity cannot be specified at an early stage of its life cycle. Thus, models and frameworks should
still provide tools and execution run-times enabling system adaptation to such changes. Intro-
spection mechanisms are required to enable system adaptation. For instance, getting the quality
of a given component service is required to evaluate whether or not this component may be part
of a dynamic service composition.

2.3. Covered needs

Table I proposes a full view on the need for future embedded systems. This paper reports on a subset
of them, which were the focus of the Flex-eWare project (noted in italic in the table) : I.NF, I.EX,
II.SA, II.NF, III.NF, and III.EX.

These needs mainly deal with flexibility at design and development. One of the main goals
of Flex-eWare is to encapsulate technologies into a notation dedicated on concepts and suitable
for domain-specific extensions (this is detailed in Section 4). This enables the support of MDE
technologies to propose various mapping as shown in Section 5 (mapping is performed on three
different technologies: Fractal, embedded Component Container Connector Middleware (eC3M),
and OASIS.

Two others requirements are also partially covered in the Flex-eWare project: II.EX and IV.SA.
The encapsulation mechanism eases the reuse of legacy components (II.EX) and helps to increase
traceability of the software architecture (IV.SA).

Other needs are more difficult to cover so far. This is in particular the case for the management
of dynamicity (MD line in Table I). Needs like I.SA (consistency checks) or IV.NF (fault tolerance)
are more related to methodological issues and are not in the scope of the Flex-eWare project.

3. STATE OF THE ART

This section presents some state-of-the-art projects for designing and implementing flexible embed-
ded systems. We deliberately put some emphasis on the work that was part of the Flex-eWare project
legacy (in the sense, this was technologies better known in this context). The main reason is that we
took most of our inspiration from this knowledge to set up the FCM.

Sections 3.1–3.3 briefly introduce each of these building blocks: EC3M, Fractal, and OASIS. To
do so, we use the criteria identified in the previous section: architecture design and development,
deployment, run-time, nonfunctional aspects, and extensibility. Then Section 3.4 reviews some other
existing projects that have similar objectives but were not a main source of inspiration for FCM.

3.1. Embedded Component Container Connector Middleware

The eC3M‡ is an integrated approach for designing embedded systems. eC3M promotes a
component-based approach that is aligned with the Object Management Group (OMG) Deploy-
ment and Configuration (D&C) [16] and Common Object Request Broker Architecture (CORBA)
Component Model (CCM) [17] standards. Components and connectors are the two core artifacts
provided by eC3M for designing embedded systems.

Architecture design and deployment. Connectors are specific kinds of components implementing
interactions. The main difference is that they need to be adapted to the context in which they are

‡http://www.ec3m.net
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used; for instance, a connector implementing an asynchronous method invocation must adapt to a
specific interface that is used between two application components.

Containers shield the business logic of a component from its environment. Container services may
either intercept incoming or outgoing requests or implement an additional functionality that is not
provided by the business logic itself (called executor in the CCM [17] terminology). An interceptor
is a specific kind of connector.

The eC3M uses the UML profile MARTE [18] (Modeling and Analysis of Real-time and Embed-
ded systems) to define a set of UML extension targeted to real-time embedded systems. It is
structured into packages covering foundations, design, analysis, and annexes. The foundation pack-
age covers among other aspects NFPs. The NFPs are defined in a generic way, allowing to define
specific properties by means of a standardized model library.

Nonfunctional properties such as deadlines, jitter, and memory budgets play an important role in
the definition of real-time embedded systems because the correctness of the system requires that all
nonfunctional requirements are met. The MARTE library standardizes frequently used properties
such as durations and arrival patterns. The elements of the library are typically datatypes whose
attributes may cross-reference to NFP types. An example is the real-time feature (RTF) data type
that has a relative deadline attribute typed as a NFP_duration. Another attribute is an arrival
pattern having different specializations. With respect to flexibility, it is important that NFP types are
defined in a library and are thus extensible to suit domain needs.

Extensibility. Connectors and container services are not fixed; they can be defined in model libraries
in a quite similar way as application components are. An application model may import the model
libraries that are suitable for the application domain. The libraries are thus the primary extension
mechanism in eC3M.

As already mentioned, the main difference between components and connectors is the ability
of the latter to adapt themselves to a usage context. This ability is modeled by means of UML
templates, that is, the possibility to refer to formal parameters like for instance a port type. In
a template instantiation process, the formal template parameter is bound to an actual parameter.
Implementations are instantiated as well and may be defined by means of Acceleo§ templates.

The extensibility in terms of containers and connectors enables an adaptation to the application
domain to define SPLs and to manage variability. Subcomponents within a composite may option-
ally be specified via a type instead of an implementation. If this is carried out, the choice of the
implementation to use is delayed until the deployment phase, when instances and their allocation
are defined. The implementation choice may depend on the allocation, that is, on properties of the
node (such as available space, operating system (OS), and processor architecture). Another aspect
is that the use of different connectors facilitates the use of different deployment architecture, for
example, a deployment architecture in an automotive platform.

Run-time adaptation. The focus of eC3M is currently on statically deployed applications. It is
possible to change the assembly by reconnecting ports and instantiating components at run-time.
However, this must be carried out programmatically; that is, one of the application components must
explicitly instantiate new components and call the port connection operations. Current work aims
to express variability at model level and support automated transitions between the variants. In this
context, we also seek to support the update of components implementations and the re-instantiation
of existing components with a new implementation.

3.2. Fractal

Fractal [19] is a hierarchical, reflective, and open component model. Fractal components can be
nested at any arbitrary level of granularity required by the modeled system, component assemblies
can be navigated to discover and modify at run-time the architecture of an application, and the
component containers can be programmed to customize the hosting and execution semantics. The

§http://www.acceleo.org
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Fractal component model is independent from programming languages, and run-time supports exist
for Java, C, and as prototype implementations for Smalltalk, C++, .NET, and Python. Fractal is
a project¶ of the OW2 (previously known as ObjectWeb) consortium for open source middleware.
Fractal/Think [20,21], which is one of the existing run-time support of the Fractal component model
for the C language, is used in this article (see Section 5.1).

Architecture design and deployment. The description of the architecture and the configuration of
a Fractal system is conducted with Fractal ADL [22], which is an XML-based ADL. Fractal ADL
provides a language for describing component hierarchies, component communication links, and
component properties. A tool chain is provided to parse, deploy, and instantiate a Fractal system.
The tool chain can be extended to accommodate different needs and properties. For example, one
may need to specify real-time related properties such as worst-case execution time or periodicity for
a component or to specify deployment related information such as the computing node on which a
component ought to be deployed.

For this extensibility to be allowed, the tool chain is divided into three parts: a loader, a com-
piler, and a builder parts. Each of these parts are themselves component-based with typically one
component per concept of the ADL. The loader components build the abstract syntax tree (AST) cor-
responding to the architecture descriptor, the compiler components generate the set of instantiation
and deployment tasks, and the builder components execute these tasks.

Customizing the ADL is then a matter of providing the corresponding loader, compiler, and
builder components that fit the extended definition. Leclercq et al. [22] show how the Fractal ADL
tool chain can be extended to support the design and the deployment of a heterogeneous multimedia
system for video decoding. The application is composed of some legacy Java and C components
and extended with Join Specification Language programs, which is a domain-specific language for
specifying synchronization and concurrency constraints.

Extensibility. The Fractal component model is extensible in the sense that components can be
endowed with arbitrary reflective capabilities, from plain black-box objects to components that
allow a fine-grained manipulation of their internal structures. This feature has been motivated by
the fact that existing component models (see for example [23] for a survey) fail from delivering
a solution where components can fit various run-time environments and requirements: the model
is either general purpose, for example Enterprise JavaBeans, or tailored for a precise application
domain. This generality or this specialization stems from the execution semantics and the techni-
cal services that are provided by the framework to the hosted components. With Fractal, instead of
mandating a particular execution semantics or a set of fixed and predefined technical services, the
component containers (so-called membrane in the Fractal terminology) are open and programmable.
Membranes are decomposed in controllers that implement a piece of the hosting logic. Controllers
expose their services through control interfaces. Extending the Fractal component model is then a
matter of providing the corresponding control interfaces, controllers, and membranes.

Run-time adaptation. The default execution semantics of a Fractal component comprises three
main parts implemented as controllers: hierarchy management, binding management, and life cycle
management. Each of these parts provides a set of CRUD (Create, Read, Update, and Delete) oper-
ations for managing parent–child relationships between components, communication links between
components, and starting/stopping components, respectively. In addition, the framework provides a
component factory for dynamically instantiating components at run-time.

3.3. The OASIS tool chain for safety-critical real-time systems

OASIS [24] is a tool chain for building safety-critical real-time multitask systems where the system
behavior is independent from the asynchrony that is allowed during the execution of an applica-
tion. The system behavior is therefore unvarying, unique, and independent from its realization on a

¶http://fractal.ow2.org
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target computer. Consequently, OASIS allows a deterministic and predictable execution of safety-
critical real-time systems, thus guaranteeing specified dependability properties. OASIS comprises,
in a programming model, its associated offline tool chain and a safety-oriented real-time kernel that
implements a multiscale time-triggered execution model. The OASIS kernel is available on various
architectures and is currently in use in industrial products in the nuclear field [25].

Architecture design and deployment. A specific programming language, called ‰C, is used to
describe the architecture of an OASIS application, that is, the real-time tasks called agents, their
communication links, and their temporal behavior, as well as the applicative C code. An agent is
composed of a set of sequential procedures, called elementary activities (EA), which have prece-
dence relationships expressed through deadlines on the basis of a common physical time. The
execution of an EA is bounded by its earliest starting date (the deadline of a the previous EA)
and its deadline, the latest date by which it must be finished. This defines the temporal behavior of
an agent. The temporal width of each EA is set by the developer with‰C. OASIS does not introduce
constraints on the manner that application are decomposed into agents, and the temporal behavior
of agents can be periodic or not, regular or not.

Classical consistency checks are performed by the OASIS tool chain on communication inter-
faces, such as on data type. Furthermore, as the temporal behavior of an OASIS agent is fully
specified, the size of buffers used to implement communications can be computed to ensure that any
attempt of buffer overflows will be detected. This participates in the dependability property of the
OASIS approach. Besides, the fulfillment of end-to-end temporal constraints by an application can
be demonstrated by construction.

On the basis of the static description of the application, binaries are generated by the OASIS tool
chain that can be used by OASIS kernels for execution. The temporal and spatial isolation mecha-
nisms of OASIS ensure the traceability of the software structure at run-time through a strict control
of the behavior of agents.

Extensibility. As communication interfaces and their temporal behaviors are fully specified, agents
can be composed at both the source and binary levels. Consequently, agents can be reused in various
applications and can be provided by different software suppliers. In addition, legacy code can easily
be reused by encapsulating binary objects within an agent at the linking step of the construction of
binaries.

In OASIS, communication latencies between agents are never considered as null. Therefore and
from the programming model point of view, OASIS can be transparently extended to various archi-
tectures without requiring changes in the software architectures of applications. For instance, the
OASIS approach has been extended from mono-processor to distributed [26] or symmetric multipro-
cessing architectures [27] transparently from the application developer point of view. All low-level
details such as network scheduling or allocation of cores to agents are managed by the OASIS tool
chain and its associated kernel.

Run-time adaptation. OASIS assumes a static description of the temporal and functional behavior
of agents that are part of an application. Future work includes reconfiguration of an application to
different temporal and functional behaviors in case of, for instance, software errors or hardware
failures.

3.4. Other approaches

In addition to the previously identified technologies, many other approaches provide some solu-
tions, full or partial, to the problems identified in Section 2. We briefly review some of them in the
following.

Architecture Analysis and Design Language. AADL [28] is a modeling notation with both a textual
and graphical representation. It provides modeling concepts to describe the run-time architecture of
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systems in terms of concurrent tasks and their interactions as well as their mapping onto an execution
platform.

Architecture Analysis and Design Language offers threads as schedulable units of concurrent
execution, processes to represent virtual address spaces whose boundaries are enforced at run-time,
and systems to support hierarchical organization of threads and processes. AADL supports model-
ing of the execution platform in terms of processors that schedule and execute threads, of memory
that stores code and data, of devices such as sensors, actuators, and cameras that interface with the
external environment, and of buses that interconnect processors, memory, and devices. Threads can
execute at given time intervals (periodic), triggered by events (aperiodic), and paced to limit the
execution rate (sporadic), by remote subprogram calls (server) or as background tasks. These thread
characteristics are defined as part of the thread declaration.

Architecture Analysis and Design Language offers extensibility thought the definition of new
‘properties’ in the model.

Open Services Gateway initiative. OSGi [5] provides a service-oriented environment initially
focused on solutions for embedded Java and the networked devices markets. OSGi offers some
standardized ways to manage the software life cycle and to discover services in a distributed envi-
ronment. OSGi defines a framework extended by system services (i.e., log, user administration, etc).
A user application is an aggregation of bundles that are described in a manifest (i.e., bundle name,
provided and required interfaces, etc). Therefore, the OSGi flexibility is mainly focus on dynamic
software deployment.

Some component models such as iPOJO [29] have been implemented on top of OSGi and provide
means for describing and deploying a component-based architecture.

For embedded system concern, usual OSGi frameworks are not suitable for different reasons (i.e.,
memory management, resource sharing, scheduling mechanisms, etc). Although real-time specifi-
cation for Java (RTSJ) meets these needs, executing an OSGi framework on top of RTSJ is not
sufficient [30]. Some initiatives like [31, 32] are focused on the design of OSGi with RTSJ by
providing, for instance, a temporal isolation.

Universal plug and play. UPnP [6] is a technology that provides an architecture for network dis-
covery and connectivity of appliances, devices, and computing equipment of all sorts. With UPnP,
a device can dynamically join a network, obtain an IP address, convey its capabilities, and learn
about the presence and capabilities of other devices. Finally, a device can leave a network smoothly
and automatically without leaving any unwanted state behind. UPnP covers the steps of network
discovery, service description, remote invocation, and event publishing.

Automotive Open System Architecture. AUTOSAR [9] is a software architecture standardized by
the automotive industry. It is the result of a development shift from ECU or ECU-based approaches,
where ECUs are supplied as black boxes, to a function-based approach. It defines a basic infras-
tructure defining a clear separation between application software, software services, and hardware,
which are typically supplied by separate stakeholders, that is, automotive manufacturers, suppliers,
and systems software developers.

Automotive Open System Architecture supports a design process including a specific configu-
ration and generation phase. Configuration involves selecting information on the overall vehicle
system in which a given application component will be integrated such as the list of ECUs, the
network used, and so forth. Generation involves the integration of application software with sys-
tem software and configuration information into predetermined static computing configurations, an
industry requirement for today’s resource-constrained embedded systems.

Automotive Open System Architecture clearly advances toward component-based design, but it
still lacks features to enforce suitable SoC including between functional and NFPs.

Finally, AUTOSAR flexibility is ensured to throw a clear definition of interfaces. Automotive
manufacturers can easily assemble different components from different stakeholders. A drawback
is that the flexibility at run-time is low (i.e., mode management).
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Component Synthesis using Model Integrated Computing. CoSMIC [33] is a tool suite to build dis-
tributed real-time embedded applications based on both the OMG CCM and D&C specifications.
Applications in CoSMIC are modeled using a set of description languages: Platform Independent
Component Modeling Language to describe the components and their QoS parameters, Compo-
nent Descriptor Modeling Language to describe how components are deployed and configured, and
Options Configuration Modeling Language to describe the middleware configuration options. The
applications are built on top of the component middleware CIAO (CCM implementation over TAO),
which offers capabilities to separate the development of the application from its deployment and
configuration.

Component Synthesis using Model Integrated Computing supports flexibility mainly at the level
of QoS options that are related to the policies of the underlying RT-CORBA ORB (TAO). The fact
that CoSMIC is based on several different languages to specify an application means that each rep-
resentation must be consolidated after any change on the application model. The topmost layer used
to dynamically refine components properties is problematic for critical systems where all resources
must be allocated statically. These drawbacks restrict the use of CoSMIC to distributed real-time
embedded systems where no correctness by construction is required.

3.5. Synthesis

Table II summarizes the characteristics of the studied approaches for building flexible embedded
systems. The four proposed categories are major features provided by these solutions. They are
mapped from the life cycle phases identified in Section 2. These characteristics serve as input and
building blocks for the FCM metamodel defined in the next section.

In terms of design and development, all studied approaches propose a software artifact introduc-
ing variability/flexibility and support code encapsulation. Even if the terms differ, the purpose is
shared among all work in the state of the art.

A hierarchical vision of system design, although not provided by all approaches, seems also to
be a key characteristic. This enables decomposing a system into subsystems where each subsystem
can be designed independently from the other ones. This increases system flexibility by enabling
designers to focus on smaller software units. For instance, eC3M allows to specify several imple-
mentations per component type. This broadens the scope of target platforms for the system because
we can select the implementation that better fit a given execution context.

Finally, some approaches provide an explicit support for nonfunctional services, such as in the
case of eC3M and Fractal.

In terms of deployment, all studied approaches provide some kind of descriptors (usually
XML-based) to specify configuration data used when deploying a system on a target platform.

At run-time, flexibility is ensured through some mechanisms for reconfiguring dynamically the
deployed system. This is achieved with an API that either modifies the assembly, like in Fractal, or
enables switching between different execution modes, like in AUTOSAR or AADL.

On the basis of these characteristics and the requirements identified in Section 2, the next section
proposes a software component metamodel for flexible embedded systems: FCM.

4. THE FLEX-EWARE COMPONENT MODEL

This section presents the FCM, which is our solution for designing and implementing flexible and
reconfigurable embedded software systems. This model covers the life cycle phases of design,
development, and deployment.

A major objective of the FCM is to be a general purpose model for embedded systems and to
enable designing systems that will be later on implemented with different technologies. In this
respect, Section 5 provides three case studies that illustrate how the FCM is used for Fractal, eC3M,
and OASIS. Another key objective of the FCM is to be flexible, that is, being adaptable and exten-
sible without modifying the metamodel itself. The main idea to achieve this goal is the use of generic
elements in the metamodel that are instantiated by model libraries.
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Table II. Comparison of features for building blocks approaches in terms of flexibility.

Category Requirements eC3M Fractal OASIS Other approaches

I. Design Encapsulation Component Component Agent OSGi: bundle
AUTOSAR: component
UPnP: service
AADL: component

Component Composite Supported NS OSGi: extensions, e.g.,
iPOJO [29]

hierarchies component AADL: supported

II. Development Assembly Connectors Architecture Implicit AADL: several
within Description implementation
composite Language per component

Nonfunctional Container Membrane Temporal AADL: by means of
aspects ‘properties’

III. Deployment NS Component Architecture Static OSGi: manifest file
deployment Description in bundle
plans Language UPnP: service descriptor

AUTOSAR: XML
configuration data
AADL: mapping of
components to hardware

IV. Execution Alternative Choice between Assembly re- Static OSGi: dynamic code
systems several static configuration deployment

CDPs API AUTOSAR: mode
management

Introspection Container Assembly NS OSGi: manifest file in bundle
service introspection UPnP: remote introspection

API of device descriptors

eC3M, embedded Component Container Connector Middleware; OASIS, Organization for the Advancement
of Structured Information Standards; OSGi, Open Services Gateway initiative; AUTOSAR, Automotive Open
System Architecture; UPnP, universal plug and play; AADL, Architecture Analysis and Design Language.

4.1. Underlying principles

The design of the FCM metamodel is based on four main principles. These are detailed in the
following and concern the definition of components, connectors, ports, and extension mechanisms
supported by the metamodel.

Distinction between component type and implementation. It is possible to provide multiple imple-
mentations of a type, for instance, with different QoS properties or suitable for a specific target (OS
and/or hardware architecture). The main benefit is that an application architecture may refer only
to a type whenever the implementation may vary or is deployment specific. It can be fixed at a late
phase in the product life cycle (deployment, III in Table I) enhancing reusability and flexibility. A
type defines a well-encapsulated entity that may own configuration properties (which are typically
application-level configuration properties) and explicit interaction points called ports.

Explicit connectors and connector types. The FCM provides the ability to model connectors, spe-
cific variants of components that describe interactions as well as their implementation. Thus, new
interaction mechanisms can be added by extending model libraries that define connector types and
implementations. This makes it possible to tailor interaction mechanisms to domain needs, for exam-
ple, provide synchronous calls with configurable timeouts or implementations that are optimized for
a specific real-time operating system such as OSEK [34] in the automotive domain. Connectors have
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a role within a composition, carry a type and can be realized by one or more implementations. The
main difference is that they are typically defined within a template because they have to be able to
adapt themselves to the context in which they are used.

A uniform way of defining new kind of ports. Instead of fixed kinds of ports (e.g., one for events
and another for invocations), a port in FCM is characterized by its type and its port kind. The port
kind is part of a general or domain-specific model library and is associated with a certain (infor-
mal) semantics. A mapping rule associated with the port kind describes how to derive provided or
required interfaces from the port type.

Extension mechanism. The objective of the extension mechanism is to identify elements that may
need to change to react for instance to domain requirements or new underlying technologies. These
elements are ports, interaction semantics and their implementation, and container services.

A constraint is that extensions should be possible without modification of the metamodel because
this would require an adaptation of modeling environments (tools). Thus, extensions are specified
via modeling libraries: domain-specific connector types and implementations in connection with
suitable port kind definitions enable the customization of interaction mechanisms. Specific compo-
nents and connectors (interceptors) defined in a model library extend the available choice of services
within a container.

4.2. Architecture of the metamodel

The FCM metamodel identifies two main packages: BasicFCM and CompleteFCM. The diagram
of these two packages is depicted in Figure 1. Concepts in the BasicFCM package mainly address
issues related to composition, and concepts in the CompleteFCM package address issues related
to deployment.

The BasicFCM package defines the basic concepts associated with a FCM component. Many
elements in our component model have a name. The FCMCore subpackage defines a specific meta
model element called NamedElement that reflects this: it is a common superclass for all model
elements that have a name. For related elements to be organized, a common concept is to intro-
duce name spaces, that is, to package related elements. But not all elements can be owned directly
by a package (e.g., attributes are owned by a component, as shown in the next paragraph). As for
the named element, we introduce a superclass that captures the concept of elements that ‘can be
packaged’. Please note that the package is itself a packageable element, enabling arbitrary nesting.

BasicFCM

CompleteFCM

FCMCore

FCMType

FCMinstance FCMTemplate

FCMPort

FCMComponentType

FCMComponentImplementation

gurableElements

FCMComponentInstance

FCMQoS

FCMPackaging

FCMPlatform

FCMDeployment

Figure 1. The Flex-eWare component model architecture.
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A component is an entity of encapsulation. It is characterized by (1) its name, (2) a set of well-
defined interaction points (called ports), (3) the set of configuration attributes that it owns, and (iv)
its behavior. As said before, an important and quite common concept is the separation between
a component type and its implementation. The first three aspects define a component type that is
specified in the package FCMComponentType (while relying on the specification of ports and
attributes within other packages). The fourth aspect is only relevant for a component implementa-
tion. In the sequel, we state which packages of the metamodel deal with component characteristics
(2) to (4).

(2) Ports (see FCMPort package) are a fundamental concept of component modeling. This
common encapsulation mechanism exists in most component-oriented frameworks, even though
the name and the semantics given to this concept may vary according to the framework. A
major characteristic of ports in FCM is that they are not only characterized by a type but also
by a kind (PortKind). The kind carries an informally specified semantics and a rule that char-
acterizes the port in terms of provided and required interfaces (mapping rule). This mechanism
enables the extensibility of ports: instead of defining a specific metamodel element for each
kind of port (e.g., a port that provides an interface, a port that consumes events, etc.), a single
generic port is used. New port kinds can be defined in modeling library (i.e., without modify-
ing the metamodel), along with a mapping rule for provided and required interfaces. Because
of their role in the context of ports, interfaces are introduced as a set of operation signatures
within FCM. They are actually the only concrete kind of ‘types’ defined by the FCMType pack-
age that introduces the generic notion of a type and typed elements, that is, elements such as
ports that have a type. The metamodel remains voluntarily generic about what a type is, except
for interfaces.

(3) The component type owns a set of configuration attributes. The basic idea is that
an instance of a component fixes the value of such an attribute. The ability to have
attributes is inherited via the superclass FCMConfigurableElement defined in the package
FCMConfigurableElements. Besides the component type, other elements (notably port kinds)
inherit from this metamodel element or its variant ConfigurableElementInstance.

(4) A component implementation (see package FCMComponentImplementation) is a real-
ization of a component type. The implementation is either monolithic or described as an assembly
of parts (i.e., some manifestation of component types or implementations assembled together).
In case of the latter, an implementation owns a set of parts and a set of connectors that con-
nect the ports of these parts. A connector has a type (see connector type mentioned previously)
and an implementation (ConnectorImplementation), which is a specification of a component
implementation.

Connectors are a specific variant of components that are responsible for interactions. In the meta-
model, a ConnectorType inherits from ComponentType without adding any particular properties.
Likewise, a connector implementation inherits from a component implementation. This concept is
important for extensibility: instead of having a predefined set of interaction mechanisms, a con-
nector type describes interaction patterns, and a connector implementation is a possible realization
of this pattern. A specific property of connectors is that their definition is not fixed because they
need to adapt to the context in which they are used; for example, a connector port may be typed
with a placeholder type that is later replaced by concrete component type. This mechanisms is cap-
tured with the FCMTemplate package. The idea is to be able to capture generic model elements
(i.e., with explicit template parameters) that are representative of a particular application-domain
and/or particular target technologies. These generic elements can then be made application specific
by simple and systematic parameter bindings.
FCMInstance and FCMComponentInstance. The FCMInstance package introduces

mechanisms for specifying statically (i.e., at design-time) run-time instances. An instance speci-
fication has a set of slots that associate a model element with a value (ValueSpecification). These
mechanisms are inspired by UML2. The FCMComponent instance package defines an extension of
the generic instance specification in case of components, that is, specific slots that reference con-
tained parts, ports, or connectors. For instance, a PartSlot associates the parts of a component with
a value that they have within a specific instance.

Copyright © 2011 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2011)
DOI: 10.1002/spe



FLEX-EWARE: A FLEXIBLE MDE-BASED SOLUTION

The CompleteFCM package defines extended features related to deployment associated with a
FCM component in the following packages:

� FCMQoS. QoS definitions within the FCM are based on QoS aware types and QoS expression.
A component implementation owns a set of QoS expressions. However, there is no concrete
mechanism on how QoS expressions are formed because the QoS definition (nonfunctional
aspects in general) should not make use of a particular formalism. This enables the use of
existing means to define QoS properties. A mechanism that is intended to be used in conjunc-
tion with FCM is the UML profile MARTE that features a library with basic NFP types and a
value specification language.
� FCMPackaging. Packaging allows to bundle one or more implementations of the same

component type within a single unit. The basic idea is to have a single artifact that repre-
sents a component to facilitate component deployment and installation without fixing a certain
technology how the contained parts are stored (e.g., in a ZIP file).
� FCMServices. This package offers the possibility to define so-called services that intercept

interactions through a port (before and/or after an invocation). Similar to a connector, a service
is an extension of a normal component; that is, it has a separation between type and implemen-
tation and can be defined in a model library. The latter implies that the set of services can be
extended depending on domain needs. A service is typically realized within a container. How-
ever, the concept of a container is not part of FCM itself because from a modeling viewpoint,
it is sufficient to specify which services should be activated for a component instance.
� FCMPlatform. A platform (FCM domain) is characterized by a set of elements that are

either processing resources (Node) or communication resources (e.g., Bus). This concept can
be extended as required for certain domains (e.g., to add specific communication resources).
� FCMDeployment. This package defines primarily the concept of a static allocation of compo-

nent instances on nodes (Node). This information is captured by a DeploymentPlan (adopting
CCM terminology) that owns a set of deployments that associate instance and node.

4.3. Dimensions of flexibility

As mentioned in Section 4.1, a major design criterion of the FCM metamodel has been to enable
flexibility without a modification of the metamodel but with introducing model libraries. This section
summarizes the four main flexibility dimensions that are achieved by the FCM.

� New component ports. New component ports enable the implementation of new interaction
mechanisms. The ability to extend ports via the definition of a port kind element within a
model library is the first building block for flexible interactions and is enabled via the package
FCMPort.
� New connectors. The second flexibility dimension is provided by the ability to define new inter-

action components along with their realization in a model library. As previously mentioned,
connectors with the FCM are variants of components. They are thus specified as special-
ization of component types (package FCMType) and component implementations (package
FCMComponentImplementation).
� New NFPs. The FCMQoS package does not assume a particular language for defining QoS

expressions. This enables the use of languages or approaches tailored to a particular application
domain as long as the definition of specific NFPs.
� New containers. The FCMServices package allows the definition of new container services

by means of a model library. Because services are components embedded into the container,
there is also a separation between type and implementation.

Overall, the FCM metamodel provides a common ground for designing and implementing
component-based systems where the concepts such as component, port, and connector can be spe-
cialized to match the specificities of run-time platforms. We illustrate this in the next section with
three case studies on three different platforms: Fractal/Think, eC3M, and OASIS.
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5. CASE STUDIES

This section illustrates the use of the FCM that has been presented in the previous section, on
three use cases: wireless sensor networks (WSNs; Section 5.1), distributed client/server applica-
tions (Section 5.2), and control systems for electrical devices (Section 5.3). For each use case, the
concepts defined in the FCM are mapped onto different technologies: the Fractal/Think component
framework [20, 21], the eC3M middleware, and the OASIS tool chain [24].

This section covers a broad range of usages and technologies for embedded systems and wishes
to demonstrate the adequacy of the FCM in all these cases. Furthermore, each use case emphasizes
a particular aspect related to the design and implementation of embedded systems: reconfiguration,
low memory footprint, and software component reuse, respectively.

All three presentations follow the same pattern. We start by introducing briefly the case study and
the platform. We then present the mapping of FCM concepts onto the platform, give an overview
of the toolchain associated with the platform, and report on some experimental data. We concluded
by highlighting the flexibility dimensions of the FCM that have been put into practice by the case
study.

5.1. Case study 1: FCM over Fractal

Our first case study is in the domain of WSN. This domain is rather broad, going from city automa-
tion services (e.g., smart public lighting, waste management) to personal healthcare services (e.g.,
continual medical monitoring) and to CPE. The target execution platform for this case study is the
Fractal/Think [20,21] component framework, which is a C implementation of the Fractal component
model (see Section 3.2).

The Think compiler supports a set of flexible-oriented properties [35] for designing reconfig-
urable wireless embedded systems. These properties are used to configure the Think compilation
process: first, to generate the metadata allowing to reify the Fractal component concepts at run-time
(e.g., to retrieve a component attribute or the descriptor of a bound interface); second, to generate
the standard Fractal controller implementations over these metadata [36]. As dynamic reconfigura-
tion may not be necessary for all system components, the Think framework provides fine-grained
mechanisms to specify whether a simple component attribute, a single component, or a subset of
system components is not likely to evolve at execution time.

These features allow to generate minimal reconfiguration infrastructures, optimizing available
resources usage in accordance with application domain needs [37, 38]. These are typical non-
functional concerns that can be expressed by extension mechanisms provided within the FCM
metamodel.

5.1.1. Mapping of FCM concepts. We briefly outline below the mapping between FCM and Fractal.
Readers may refer to [39] for further details.

Mapping of generic FCM ADL concepts. The mapping between FCM and Fractal ADL is straight-
forward because the latter is a building block for defining the FCM metamodel presented in
Section 4. Therefore, most of the FCM concepts can be directly mapped toward Fractal model
entities, apart from two features not handled by Fractal: (i) An FCM model relies on three levels
of architecture’s specification – type, implementation, and instance – whereas Fractal ADL focuses
on the latter level. Thereby, a FCM instance model is the only entry point of the mapping process
between FCM and Fractal. (ii) The concept of port is not supported by Fractal, where component
interactions are only specified by a binding between a single required interface and a single pro-
vided interface. As the concept of FCM interface is isomorphic to the one of Fractal, the mapping
rule merely consists in translating each FCM connector instance into a set of Fractal bindings,
according to the set of required and provided interfaces attached to both FCM port ends.

Mapping of reconfiguration features. We rely on the extension mechanism defined in the FCM and
presented in Section 4 for specifying reconfiguration capabilities:
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Figure 2. Flex-eWare component model to FRACTAL/THINK process.

� Within the FCM model library, we define the set of services implemented by the Fractal recon-
figuration controllers. The FCM developer then specifies which component containers of its
application must provide local reconfiguration capability at run-time.
� The flexible-oriented properties defined by Think are modeled at FCM level by means of

QoSExpressions. These expressions can be attached to any FCM elements and can be con-
figured to be interpreted recursively by the Think compiler (e.g., for specifying with a single
QoSExpression attached to a composite that it must be applied to all of its subcomponents).

5.1.2. Overview of the process and associated tools. The mapping from an FCM instance model to
a Think executable is sketched out in Figure 2. The numbered steps correspond respectively to the
following treatments:

1. For each FCM interface signature, a corresponding file is generated in the Think Interface
Description Language (IDL).

2. The FCM architecture description is translated into Fractal AST nodes, which is the internal
architectural representation used by the Think compiler.

3. The flexibility-oriented properties set by the FCM developer as QoSExpressions are inter-
preted, and the corresponding fine-grained properties expected by the Think compiler are
inferred in consequence. The same mechanism is used to set the Fractal containers specified
at FCM level. This step outputs an annotated Fractal AST that feeds the compiler.

4. The Think compiler maps architectural elements to C variables in implementation code, trans-
forms existing functional code, and produces metadata and Fractal controller implementations
according to the annotations attached to the AST nodes. In addition, it generates the code
implementing the bootstrap process of the system.

5. Finally, the set of C source files generated by Think are compiled and linked by a classical C
compiler.

5.1.3. Experiments. We designed a typical WSN infrastructure whose purpose is to monitor and
manage a group of sensors and/or actuators deployed in the field (e.g., buildings, factories, forests).
These devices form a Zigbee network that is administrated via an asymmetric digital subscriber line
or general packet radio service Internet connection. Measured data are sent to an oBIX [40] server
and are available for consultation via a web-based graphical interface. Additionally, administrators
are able to remotely modify device architectures. The left side of Figure 3 shows a simplified version
of our infrastructure.

Because we are interested in evaluating run-time reconfiguration capabilities in resource-limited
systems, we focus on the Zigbee network devices, which typically expose this kind of constraint.
In our case study, the Zigbee network is mainly composed of AVRRAVEN boards including an
Atmega1284p processor (8-bit AVR, 128 KB of Flash memory, 16 KB RAM, 4 K EEPROM) and
a Atmega3290 processor dedicated to liquid crystal display (LCD) management. These devices are
coordinated by a RZUSBSTICK board (90USB1287 8-bit processor) bound to the Zigbee/HTTP
gateway. On each sensor node, an FCM architecture is deployed, as illustrated in the right part of
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Figure 3. Global infrastructure and Flex-eWare component model architecture instance deployed on each
sensor node.

Figure 3. This architecture implements the required services to dynamically update or change its
components sent in a binary form via the Zigbee network.

Dynamic reconfiguration experiment. One of the reconfiguration examples we ran was motivated
by the need for changing the way remote devices present data to in-site users through its embedded
display. The goal is to replace the LCD manager component LCD_ATmega (see Figure 3) by a new
version of it, newLCD_ATmega, during system execution. For it to be accomplished, the following
operations are executed:

1. The Zigbee network coordinator sends a predefined message to the device, which passes to a
special Reconfiguration mode.

2. The Zigbee network coordinator sends the newLCD_ATmega component to the device. This
new component was previously converted into an Intel HEX format. Code and Data are sent
through the network line-by-line.

3. Once the transmission is completed, a reference to a Fractal interface implemented by the
container of newLCD_ATmega and allowing its run-time introspection is retrieved by the
WSNEndDevice component. This introspection service allows to retrieve the provided
interfaces of the uploaded component.

4. The initial bindings to LCD_ATmega are destroyed and replaced to bound its uploaded
instance, thanks to a Fractal controller implemented by the container of the WSNEndDevice
component.

5. The device returns to a Nominal execution mode. In this particular case, the device is rebooted.
This could be avoided if component containers expose and implement the Fractal life cycle
controller that ensures a safe transition between Reconfiguration and Nominal modes. How-
ever, providing this service at run-time has a non-negligible impact in terms of memory
footprint, which is the most critical performance issue for WSN applications, as discussed
in the next section.

Low resources usage experimental results. Table III presents the memory footprint of a binary gen-
erated from the FCM model instance shown in Figure 3 intended to be deployed in a sensor node. We
measure the overhead in code (i.e., .text section) and data, including initialized (i.e., .data sec-
tion) and uninitialized (i.e., .bss section) data. We make this distinction as code is usually placed
in read only memory, whereas data are generally placed in random access memory. Table III(a)
presents the footprint of the application code compared with the code generated by the Think frame-
work. We consider three scenarios. (i) If none of the FCM extensions presented in Section 5.1.1 are
used to explicitly specify the reconfiguration points of the architecture, Think generates by default
metadata and Fractal controllers for the whole system (Table III(b)). (ii) In the second scenario, the
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Table III. Memory footprint sizes (in bytes) of the case study, for the functional part and
the Think Framework part.

Functional part Think framework part

(a) (b) (c) (d)
Scenarios – Highly flexible Highly flexible Static

– All controllers Required controllers Required controllers

Code 5462 C59.8% C25.0% C10.8%
Data 619 C87.0% C66.6% C36%

Think metadata are generated for the whole system, but only the mandatory Fractal controllers are
deployed to implement the reconfiguration scenario with the newLCD_ATmega component pre-
sented previously (Table III(c)). (iii) Finally, only the mandatory Fractal controllers and metadata
are deployed (Table III(d)).

These results show that a fine-grained tuning of the architecture reconfiguration points is a
required feature to fulfill the constraints of wireless embedded systems. By the use of FCM exten-
sions, we provide to the developer high-level mechanisms to explicitly deploy only the mandatory
services required by a reconfiguration scenario. The induced overheads are then paid only where
necessary.

5.1.4. Flexibility dimensions. This case study puts into practice two of the four flexibility dimen-
sions identified in Section 4.3 and their associated model libraries – container and NFPs – reifying
at model level the specificities of the Think run-time platform. The container dimension enables
dealing with the reconfiguration controllers. The set of reconfiguration services supported by Think
has been therefore defined as an FCM model library directly usable within the end-user’s specifica-
tions. The NFPs dimension concerns the QoSExpressions for Think flexibility-oriented properties.
This extension mechanism provided by FCM offers a straightforward mean to decorate model arti-
facts with annotations. These annotations are in turn used to drive the interpretation process leading
to the generation of Think executables.

5.2. Case study 2: FCM over eC3M

The second case study is in the domain of distributed client/server applications with the eC3M
middleware platform presented in Section 3.1.

5.2.1. Mapping of FCM concepts. Because eC3M is directly based on the FCM profile, no map-
ping is required. Readers may refer to [39] for further details. Application models typically contain
additional information in the form of MARTE stereotypes to specify real-time aspects. An example
is the RTF of the MARTE ‘High-Level Application Modeling’ (HLAM) approach. In general, the
MARTE value specification language and the standardized NFP library (Annex D of the MARTE
specifications) are used to specify nonfunctional parameters, notably durations (NFP_duration).

5.2.2. Overview of the process and associated tools. An overview of the eC3M toolchain is pro-
vided in Figure 4. The main specification artifact is a UML model enriched by information from the
profiles FCM and MARTE. A set of model transformations is executed to transform the component-
based model into an object-oriented model on which standard UML to code generators, in particular
UML to C++ generators, can be applied.

These transformations include the following:

� The reification of connectors – that is, replacing FCM connectors (stereotyped UML con-
nectors) with interaction components that are adapted to the application context; that is, use
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Figure 4. The embedded Component Container Connector Middleware toolchain.

port types that are compatible with those of the application components (and implementations
adapted to these port types as well).
� The implementation of the container pattern – that is, redirecting connections to an application

component with connections to the container that embeds the application component.
� Apply standard design patterns that transform components into standard classes – that is,

replace ports with functions related to manipulate connections and obtain references. This
function is a bit similar to CCM IDL3 toward IDL2 mapping.
� Create a subset of the model per node on which an application is deployed. Each of these mod-

els contains a bootloader that is responsible for instantiating the components that are deployed
on this node (in the context of a static deployment).

5.2.3. Experiments. The eC3M model has so far been used for some sample applications, includ-
ing a data acquisition system. In the sequel, we examine a very simple system consisting of a client
and a server component, as shown in Figure 5 (the interface ICompute consists of two operations:
add and mult). For initial activities to be started, eC3M uses a simple convention: the client owns a
port providing the standard eC3M interface called IStart. This interface includes the operation run
(similar to the Java Runnable interface) that is automatically invoked during the system start-up.

The client can use the ‘standard’ FCM port kind UseInterface resulting in a derived required
interface that corresponds exactly to the interface that types the port – in this case, ICompute. In
real-time applications, the caller may want to pass for instance a period length (to enable automatic
cyclic invocations) and a relative deadline along with the operation invocation. The MARTE RTF
is a standardized data structure for these real-time properties. One option to pass the RTF property
with a call is to simply add it as an additional parameter to an operation. Instead of manually mod-
ifying the interface, a client developer can change the kind of port and use a variant that calculates
a derived interface with an additional RTF parameter automatically. In this case, the interaction
between client and server needs to be realized by a connector evaluating the RTF parameter and
calling the unmodified interface of the server.

Another quite frequent need is that the client is not blocked while waiting for a result. CORBA
calls this asynchronous messaging (AMI) and standardizes two options: either a modified opera-
tion signature returns ‘poller’ objects that can be queried later for result data or the client is called

Figure 5. Simple example with different deployment options.
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back once data arrive. The need for these calls in component-based applications is reflected by the
recent OMG RfP (request for proposal) AMI4CCM. Both variants are available via FCM port kinds
available in an eC3M model library that compute the associated provided/required interfaces.

These two examples (passing RTF and using CORBA AMI) show the flexibility provided by the
FCM port and connector mechanisms.

Deployment and footprint. To show that the modeled example allows for different deployments,
we will examine three variants (and the achievable footprint). In the first variant, the components
are deployed on the same node and interact via a direct local invocation. This is also the case for
the second option, but the server component is protected against concurrent access by means of a
declarative container rule. In the last variant, the system is distributed on two different nodes: the
client is deployed on NodeA, the server on NodeB, and the interaction is implemented by means of
a small connector component on top of sockets provided by the OS.

Table IV shows the footprint figures for the first deployment variant with a direct connection
between client and server. There is a column for the code size on an ARM processor (a frequently
used processor in the embedded world), another for a x86 processor, and a third for the data size
(random access memory) of a component instance. The code has been produced by a gcc 4.4 com-
piler with the -Os (optimize space) flag. Because both processors have 32 bit architectures, there is
no difference with respect to the size of each instance. This size is quite small: (i) the server requires
a virtual function table entry (1x4 bytes) for implementing interface ICompute; (ii) the client com-
ponent requires 3x4 bytes, 1x4 for required port q, and 2x4 for the provided port start; and (iii)
the system requires 2x4 bytes for storing the two part references. For this deployment variant, the
overheads of component mapping are in the order of a few bytes.

In the second variant, the only change is to declare the use of a container service that serializes
concurrent accesses. The declaration is compatible with the MARTE stereotype protected passive
unit (PpUnit; see HLAM chapter of [18]). The realization of container services in eC3M is based
on the delegation to an executor, as shown in Figure 6. Table V shows the footprint of the additional
components, namely the container itself (called Server_cc, the postfix is a shorthand for component
container) and the interceptor PpUnit. Please note that the container itself is only added, if there is
at least one container service declared.

Table VI shows the footprint of the last variant, the distributed client/server system, in which
client and server are deployed on different nodes and interact via a socket (for simplicity, only the
footprint of the client is shown because the server part has a similar size and structure). The adaptive

Table IV. Local deployment of client/server system.

Code ARM Code x86 Data size Description

2843 3840 Binary
256 346 24 BootLoader.o
340 443 4 ComponentModel/Server/Server.o
392 571 12 ComponentModel/Client/Client.o
52 110 8 ComponentModel/System/System.o

Figure 6. Container encapsulating protected passive unit server implementation.
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Table V. Client/Server system with protected passive unit container.

Code ARM Code x86 Data size Description

88 183 8 ComponentModel/Server/Server_cc.o
616 852 40 methodCall_ICompute/PpUnit/PpUnit.o

Table VI. Distributed deployment, client node.

Code ARM Code x86 Data size Description

9448 11290 Binary
620 695 276 BootLoader.o
60 108 8 ComponentModel/System/System.o
392 571 12 ComponentModel/Client/Client.o
352 487 – SocketRuntime/ASN.o
1628 1902 20 SocketRuntime/Socket.o
1998 2008 220 SocketRuntime/SocketRuntime.o
260 359 20 methodCall_ICompute/AsyncCall/Socket.o
404 533 16 methodCall_ICompute/AsyncCall/CStub.o

part of the socket connector can be easily identified because it has been generated into a package
that has the interface name as postfix (methodCall_ICompute). Because this part contains stubs per-
forming parameter marshaling, its size depends on the interface, that is, the number of operations
and parameters – in our scenario, the server provides two operations with two parameters each. In
this case, the adaptive part is quite small (500 bytes) compared with the fixed part in SocketRuntime
(4 K).

In this section, we have shown the overhead of the eC3M mechanisms (container, port reifica-
tions at run-time) is very small. A more important overhead is implied by the implementation of the
interaction mechanisms. However, these are defined in a model library and can be tailored toward
the application needs. In case of the shown example, the achieved footprint is very small because its
reduction on a simple marshaling an activation mechanism. For instance, an ORB supporting het-
erogeneous platforms, different transports, and server activation policies (object adapter) would be
much larger – too large for some system requirements. With eC3M, there is a choice to use a very
simple interaction mechanism with a low footprint or – if required – a connector based on ORB
implementations.

5.2.4. Flexibility dimensions. With the eC3M platform, the four flexibility dimensions identified in
Section 4.3 are available. As seen in the simple client/server example, a client may specify NFPs
such as, for instance, the frequency of server invocation. Client calls can be made asynchronous via
AMI ports and connectors. In these cases, port and connector flexibility facilitate the use of NFPs.

Another variant that has not been shown in the example is data-flow-oriented communication,
for example, a sensor producing data that is consumed by a controller. In this case, the consumer
may either actively pull data or be notified whenever new data arrives. Each variant of flow ports in
eC3M is represented by an SCM ports with the appropriate ports kind. The associated connectors
buffer a configurable volume of data.

Containers may be defined to implement technical services including for instance simple
trace/logging mechanisms, on demand instantiation of component instances, or distributed mech-
anisms such as fault detectors.

5.3. Case study 3: FCM over OASIS

The third case study concerns a medium voltage protection relay, namely the Sepam 10 product,
from Schneider Electric (Paris, Rueil-Malmaison, France). The software part of this embedded sys-
tem has been designed with the FCM and implemented with OASIS toolchain, which has been
presented in Section 3.3.
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The safety function of the software part of Sepam 10 protection relays is first to detect any faults
within the supervised power network and then ask the tripping of the circuit breakers to isolate the
faulty portion of the network. The decision to ask or not the tripping of the circuit breaker is taken
by protection algorithms. Note that differences between medium protection relays mainly consist
in the set of protection algorithms that are embedded in the device. Typical power network faults
conditions are overloads, short circuits, insulation faults, and so on. It is required that detection and
isolation of faults must occur within a given time, as specified by the IEC 60255 standard and noted
detection delay. Using the OASIS approach, we have define a software platform called OASISepam
to develop a deterministic Sepam 10 protection relay, through a by construction fulfillment on the
specified end-to-end detection delay [41].

5.3.1. Using FCM concepts to map OASIS entities. We consider only the structural aspects of an
OASIS application. Neither behavioral aspects nor temporal behavior aspects are considered. The
OASIS‰C language defines the following keywords: application, agent, clock, global, and body. An
application is composed of agents and clocks. An agent contains global variables (expressed using
the global keyword), bodies, and communication interfaces. A body is defined as a sequence of so-
called EAs (for elementary actions; see section 3.3), and the OASIS language provides instructions
to switch between bodies.

We grouped OASIS entities in two packages: component and communication packages. The
component package contains the definition of the application, clocks, global variables, and body
elements, as well as the relations between these elements. The communication package includes the
definition of communication mechanisms and their associated interfaces, as well as clocks used
to specify temporal constraints on these communications. OASIS provides two communication
mechanisms: temporal variables and messages. However, we focus on temporal variables only as
OASISepam uses exclusively this communication mechanism. A temporal variable is an implicit,
one-to-several real-time data flow. The task owner of the temporal variable updates this flow at a
predetermined rhythm, specified through the OASIS ‰C programming language.

Component package. As an OASIS application consists of communicating agents, it is hierarchi-
cally the highest component of the design. An application has a name and an initial time (keyword
inittime). The initial time is relative to the clock associated to the application. It defines the
value of the time when the application is started. An Application class is defined and the stereotype
FCMComponentType is applied to this class. The attributes of Application class are inittime
and name. The Application class refers to a clock with the role applicationClock.

An Agent Class represents an OASIS agent. This class has three attributes: name, starttime,
and stacksize. starttime defines the first activation date of the agent, and stacksize
defines the size of the stack associated to this agent. The Agent class is also stereotyped by FCM-
ComponentType because an agent is an autonomous and reusable entity in OASIS and it can
communicate with other agents. The relation that an agent is contained by an application is already
included by the FCM component definition through the composite relation. The Agent class owns
bodies. The Body class is again stereotyped by FCMComponentType. The Body class can refer
other bodies, which shows the chain of agent behavior. An Agent class refers to a StartBody class,
which indicates the object Body from which an object Agent starts its behavior. The Agent owns
also PsyCGlobalVariable, which contain all global variables of an agent. The Agent class refers to a
class Clock with two roles: as startClock and as agentClock. Figure 7 shows the Agent entity within
the FCM-OASIS metamodel library.

Communication package. An agent is a communicating entity in OASIS. We focus on communi-
cation mechanisms based on temporal variables. For temporal variables, the interaction points of
the communicating agents are directly used inside the bodies of the communicating agents. Con-
sequently, the ports representing these interaction points are attached to the communicating agents
and to the bodies of these agents.

As the Agent and the Body classes are stereotyped by FCMComponentType, they may have
ports. Each port corresponds to an interaction point. A FCMPort stereotype is applied to all ports.
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PsyCGlobalVariable

startime: integer[1]
stacksize: integer [1]

Agent Clock

StartBody

+global
[1]

+startClock
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+agentClock
[1]

[1]  + startBody

Figure 7. OASIS agent entity stereotyped by FCMComponentType within the OASIS metamodel described
using Flex-eWare component model.

The FCMPort stereotype refers to a PortKind; consequently, each port refers also to this PortKind.
PortKind defines specific rules to precisely map a given behavior. Each communication mechanism
of OASIS is expressed through a specified PortKind. In the remainder of this section, we present
two different PortKinds involved for temporal variables: TemporalVariable and ConsultInterface
port kinds.

TemporalVariable port kind. The TemporalVariable class is defined to represent OASIS communi-
cation behavior on the owner side of the temporal variable. It refers to a clock to specify the rhythm
of the temporal variable (i.e., the sampling rate of the data flow). In addition, the TemporalVariable
class has a pastValue attribute, which defines the number of values the owner wishes to read from
the data flow.

ConsultInterface port kind. The ConsultInterface class is defined to answer the need of represent-
ing the behavior of the reader of a temporal variable. It does not refer to a clock as the rhythm of
the temporal variable is defined on the owner side. Similar to the TemporalVariable PortKind, the
ConsultInterfance has a pastValue attribute.

5.3.2. Overview of the process and associated tools. Figure 8 shows the big picture of the OASIS-
FCM development process. On the left side of the figure, elements developed by the designer of the
OASIS-FCM library are shown: the OASIS-FCM metamodel library and the code generator tool.
On the right site of the figure, how an OASIS application developer can use the OASIS-FCM meta-
model to build applications and generate associated ‰C code is shown. Acceleo is used to generate
the ‰C code. Then from the model written in the UML format and by using the code generator, a
‰C code corresponding to described application is generated. The code generator uses a template
of a ‰C code. The template contains a set of scripts. Each script can visit and evaluate a structural
element of the model, such as class, association, connector, port, and instance, to produce the cor-
responding ‰C code of the described application. Note that the temporal behavior of agents must
be specified and included in the generated ‰C code by the application designer without relying on
FCM concepts. Finally, the classical OASIS tool chain can be used to build applications.

Code generation

Done by FCM/Oasis designer Done by application programmer

FCM-Oasis meta-model library Oasis Application Model

Code generator

le

PsyC code

<<apply>>

<<apply>>

<<import>>

Figure 8. OASIS-FCM development process.
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Figure 9. Medium voltage protection relay application modelized using the OASIS-FCM metamodel.

5.3.3. Experimentation using OASIS-FCM metamodel. Figure 9 shows the model we designed of
the Sepam 10 medium voltage protection relay using the OASIS-FCM metamodel. The Sepam 10
is made of three stages, namely the acquisition, the measurement, and the protection stages. The
acquisition stage produces new voltage data based on information collected by sensors. The mea-
surement stage applies various signal processing algorithms. Results of this measurement stage are
used by the protection stage to ask or not the tripping of the circuit breakers. The acquisition stage is
made of one task, whereas other stages are made of several tasks. The agARGA component defines
the acquisition stage. Components agMoy, agCumulRMS, agRMS, agCrete, and agTRS define the
measurement stage. Finally, components ag5051 and ag51Inv define the protection stage. On the
basis of this model, the application designer can generate the corresponding OASIS initial code that
must be fulfilled with temporal constraints and functional code. This application was successfully
executed on an STR710 board (ARM7-based processor) running the OASIS kernel.

One of the advantages of using FCM is the use of graphical interfaces to design OASIS-based
applications. The reusability of agents at the binary level, which is possible in OASIS, can there-
fore be facilitated. Consequently, the design of various Sepam-based products, in which protection
algorithms encapsulated in components are removed or added, is made easier.

5.3.4. Flexibility dimensions. The OASIS case study puts into practice one of the flexibility dimen-
sions identified in Section 4.3 and its associated model library: port. Communicating through OASIS
temporal variables is indeed represented by a special kind of FCM ports that define appropriate
rules to precisely map the specific behavior of this communication mechanism. A temporal vari-
able is a real-time data flow associated with an internal variable of a agent. An agent that wishes
to access a temporal variable must specify the number (i.e., depth) of a value it needs to consult
from the flow. Therefore, both TemporalVariable and ConsultInterface classes have a mandatory
pastValue attribute to express this behavior. The illustration of this flexibility dimension of the FCM
for expressing temporal variables mechanisms can be generalized to other OASIS communication
mechanisms.

5.4. Synthesis

As a matter of synthesis on these case studies, two main points are worth noticing.
First, these case studies demonstrate that a high-level, MDE-based approach for designing

component-based systems does not conflict with stringent requirements in terms of resources (mem-
ory, CPU, etc.) such as in the case of the WSN experiment in Section 5.1, the experiment on ARM
processors in Section 5.2, or time constraints such as in the case of the voltage protection relay in
Section 5.3.
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Second, the flexibility dimensions that have been introduced in the FCM in terms of ports, connec-
tors, containers, and NFPs are adequate for the supporting the requirements of diverse application
use cases such as the one presented in this section. Even if all these flexibility dimensions are not
available for each target platform, and in this case cannot be exploited, we believe that this is still
valuable to include them in the model to capitalize on some common know-how for embedded
systems.

6. CONCLUSION

This article has presented an MDE approach for designing and implementing embedded systems.
Models are widely recognized as an efficient way for capturing high-level requirements and architec-
ture design choices. Associated with techniques based on model transformation and code generation,
they provide an efficient approach for reasoning about complex embedded system architectures,
abstracting the implementation details, and easing the porting between different versions of host
target platforms.

The work presented in this article is the result of a collaborative project between academic and
industrial partners sharing expertise in telecommunication and automotive industries. The aim is to
foster the adoption of MDE solutions for designing and implementing embedded systems. The work
presented here is organized around three main activities: requirement elicitation, metamodeling, and
run-time solutions.

Section 2 has identified a set of requirements coming from the telecommunications and automo-
tive industries. These requirements have been organized in terms of design, development, deploy-
ment, and execution, which are the four main phases of the software development life cycle. They
put forward the necessity to incorporate flexibility points as soon as possible in the software devel-
opment life cycle of embedded systems. This is a key characteristic to obtain systems that are agile
and flexible enough to accommodate change and evolution. This requirement elicitation phase has
been complemented by a study of some state-of-the-art middleware and component-based solutions
for implementing embedded systems (see Section 3).

On the basis of these inputs, we have proposed in Section 4 the FCM model for designing embed-
ded systems. The two main characteristics of FCM is to be component-based and to introduce
flexibility points implemented as model libraries that extend the FCM. This model has been put
into practice with three case studies that are reported in Section 5: WSNs, distributed client/server
applications, and control systems for electrical devices. In all three cases, the execution platforms
used to operate the applications were different: the Fractal component-based platform, the eC3M
CCM-based middleware platform, and the OASIS toolchain for safety-critical real-time systems,
respectively.

This study has shown the adequacy and the maturity of MDE solutions for designing and
implementing industrial strength case studies. Models are appropriate solutions for capturing the
variability and the flexibility needed by modern embedded systems.

In future work, we plan to push the use of models a step further by using them at run-time. The
main expected benefit will be to better support co-evolution of code and models and to be able
to reflect seamlessly changes that are applied on the applications either at run time or at design-
time. This objective raises several difficult challenges such as providing an efficient solution for
encoding efficiently models for resource-constrained embedded systems and reconciling divergent
changes that are applied concurrently at design-time and run-time versions of the models. Yet, we
believe that this objective will provide a major step toward providing more agility in the design and
implementation of embedded systems. Several other objectives can be mentioned for future works.

First, we plan to enable interoperability between different platforms, thanks to a common FCM-
based design and some gateways (e.g., connectors) to be developed. Second, the FCM can be a
common base for reuse and sharing technological assets between different platforms. For example,
a connector for a given communication protocol can be specified in terms of FCM, mapped, and
reused across different target platforms. Third, current extension models in the FCM are purely
additive. It may happen that conflicts arise when applying several extensions. At some point, this
is a concern that is shared by other studies. For example, nonconflicting aspects are a domain of
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research per se in the aspect-oriented software development community [14]. In future work, we
plan to address this concern at the extension model level.
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