
Architectural and Behavioral Modeling with AADL
for Fault Tolerant Embedded Systems

Gilles Lasnier, Thomas Robert, Laurent Pautet
Institut TELECOM - TELECOM ParisTech - LTCI
46, rue Barrault, F-75634 Paris CEDEX 13, France
Email: {firstname.lastname}@telecom-paristech.fr

Fabrice Kordon
LIP6 - Université Pierre & Marie Curie

4, place Jussieu, 75252 Paris CEDEX 05, France
Email: fabrice.kordon@lip6.fr

Abstract—AADL is an architecture description language in-
tended for model-based engineering of high-integrity systems.
The AADL Behavior Annex is an extension allowing the re-
finement of behavioral aspects described through AADL. When
implementing Distributed Real-time Embedded system, fault tol-
erance concerns are integrated by applying replication patterns.
We considered a simplified design of the primary backup repli-
cation pattern to express the modeling capabilities of AADLand
its annex. Our contribution intends to give accurate description
of the synchronization mechanisms integrated in this example.

Keywords-aadl; behavior; fault-tolerant; distributed systems.

I. I NTRODUCTION

The Architecture Analysis and Design Language[1]
(AADL) is an international standard intended for model-based
engineering of High-Integrity (HI) Distributed Real-Timeand
Embedded (DRE) systems. It aims at modeling DRE systems
with deployment, configuration and real-time information,thus
allowing code generation.

For systems requiring strong dependability, embedded soft-
ware applications usually implement both control and data
acquisition services. Certification processes consider analysis,
verification, test methods, and fault tolerance as mechanisms
to increase the dependability of the whole system. Real-time
and fault-tolerance requirements are tightly related as they both
require control on the software execution flow. The verification
and code generation services enabled by AADL improve the
system overall dependability in a MDE-based approach.

Some behavior of an AADL specification can be inferred
from the described architecture thanks to the AADL run-
time model. However, this remains limited. AADL proposes
annexes to extend the core language. The AADL Behavior
Annex (AADL-BA) allows one to refine and attach additional
behavioral information useful for a finer systems analysis.

As members involved in the elaboration of these annexes,
we propose a lookup on AADL-BA to be issued in spring
2010. It provides constructions to define the expected behav-
iors of system components described with AADL. It relies on
an automata-based syntax. However, ensuring the consistency
of these automata with regards to the core specification of the
system is a difficult issue.

It is of interest to use the new features of the standard as
soon as possible to improve its capabilities. To do so, we
consider a running example of a non trivial DRE architecture

that we describe with AADL: an application integrated to a
passive replication architecture to be tolerant to crashes.

Based on that experiment, this paper illlsutrates the difficul-
ties discovered while modeling this system with AADL and
AADL-BA. It also proposes some design strategies we suggest
to describe behavior of components in AADL-BA.

The paper is structured as follow. Section II presents the
case study and highlight two modeling challenges raised by
such systems. Section III presents the AADL description of se-
lected components of the PBR case study. Finally, Section IV
provides the key concept of the annex as well as guidelines
for modeling the identified challenges.

II. T HE PBR STRATEGY

In this section we present the Primary Backup Replication
(PBR) mechanism in the context of DRE systems.

A. Passive Replication strategy for fault tolerance

In most safety-critical systems, fault tolerance is imple-
mented by duplicating the application on separate hard-
ware platforms.Replication-basedfault tolerance architectures
necessitate a synchronization protocol between application
copies. This protocol is in charge to detect theirs failures
and ensure the fault tolerant application continue to deliver
its service. The Primary Backup Replication mechanism pre-
sented in this paper is an adaptation of the fault tolerance
mechanism described in [2]. The synchronization logic is
distributed in each site of the distributed architecture ofthe
mechanism in components called controller). The replicas (the
copies of the application and their associated controller)are the
building blocks of the PBR strategy. The controllers enforce
the following behavior between the replicas:

1) One distinguished replica, called theprimary, executes
the application. The controller of this replica performs
periodic snapshots of the application execution context,
and broadcasts them to backups.

2) Other replicas do not execute their copy of the applica-
tion, They are calledbackupsand store snapshots of the
application execution context sent by the primary.

3) When the crash of the primary is detected by a backup,
backups start the election of a new primary that restarts
the application thanks to the last snapshot received.

Modeling such an architecture relies on three key functions:
the crash detection mechanism, the election protocol for a
new primary, and the reconfiguration of the elected backup
to restart the application.

B. Behavioral Modeling Challenges

This subsection provides details on the challenges that
represents each points identified as a key function of the
replication mechanism.

a) The crash detection mechanism:Replica crash de-
tection is implemented by an heartbeat protocol. Thus, ”i
am alive” messages are sent periodically from the primary
to backups to notify them that the primary is still running
correctly. As soon as backups no longer receive such messages,
they suspect a crash of the primary. The heartbeat protocol
uses watchdog or timer services to trigger the election of the
new primary. A clean specification of interactions between
watchdogs (or timers) and threads needs to be provided.

b) Primary election protocol:When the crash of the
primary is detect by backups, they start an election protocol to
determine which backup will be the new primary. We preferred
a deterministic protocol: backup IDs are sorted and the next
primary is the backup with the smallest ID. A consensus
algorithm designed to tolerate the crash fault model is used
to ensure that every backup agreed on the identity of the new
primary [3]. Once elected, this primary restarts the application.

c) Checkpoints capture and reload:Snapshots of the ap-
plication execution context cannot be performed atomically for
the whole application. In this context, we use a synchronized
checkpoint mechanism. Application threads execution context
are saved separately and combined to define the application
global state. Each thread needs to wait on a synchronization
barrier in order to capture a consistent global state. It often
requires monitors or condition variable like services.

In [4], AADL has already been used to describe the re-
configuration protocol used on replicas to tolerate faults.In
this paper, we plan to complete this approach showing how
the behavioral annex can describe the behavior of threads
implementing the replica controller.

III. D ESIGNING PBR WITH AADL V2

The AADL standard [1] is managed by the Society of Auto-
motive Engineers (SAE). for lack of space, we do not remind
the new features of AADL version 2.0 that are presented
in [5]. This section illustrate the standard capabilities with the
description of the software architecture of PBR components.

A. Modeling the PBR Architecture with AADLv2

Modeling a DRE system with AADL requires to identify
the different roles of components and their hierarchies. In
AADL, data and subprograms are located in threads. Threads
are also located in processes (providing a memory space
shared by all enclosed threads). System components are used
to hierarchically structure the system, thus increasing the
readability of the specification.

We selectedprocess, thread, subprogramscomponents to
model the application and replica controller modules of a

replica. The computers used in PBR is represented by a set of
processorcomponents and abuscomponent.

Data exchange and interaction between components are
specified through AADL features asports and connections.
Thesystemcomponent allows us describing our complete PBR
architecture that contains one primary replica and two backups.
Then,ports anddata components can both be used to model
the synchronization between the application and the controller.
A decision has to be made between these mechanisms.

1) The Replica System Component:The replica module is
presented in listing 1. It is asystemcontaining twoprocesses:
the application and its controller. This makes one replica.

system implementat ion R e p l i c a . impl
subcomponents

Appl i : p rocess A p p l i c a t i o n . impl ;
Rep Ctr l : p rocess R e p l i c a C t r l . imp l ;
CPU : p rocesso r TheCpu ;

connec t ions
por t Appl i . OutA −> Rep Ctr l . InA ;
por t Appl i . OutB −> Rep Ctr l . InB ;
por t Rep Ctr l . InA −> Appl i . OutA ;
por t Rep Ctr l . InB −> Appl i . OutB ;

p r o p e r t i e s
A c t u a l P r o c e s s o rB i n d i n g =>

re fe rence (CPU) a p p l i e s to Appl i ;
A c t u a l P r o c e s s o rB i n d i n g =>

re fe rence (CPU) a p p l i e s to Rep Ctr l ;
end r e p l i c a . impl ;

Listing 1. PBR case study in AADL: replica module

Processes are bound to the CPUprocessor. Theconnections
section shows how to connectin/out ports of the involved
processcomponents. TheActual ProcessorBinding property
binds processes to processors.

p rocess A p p l i c a t i o n
f e a t u r e s

InA : in event por t ;
OutB : out event por t ;
. . .

end A p p l i c a t i o n ;

p rocess implementa t ion A p p l i c a t i o n . impl
subcomponents

ThA : thread t h read w s ta te A ;
ThB : thread t h read w s ta te B ;

connec t ions
por t InA −> ThA . InA ;
por t ThB . OutB −> OutB ;
. . .

end A p p l i c a t i o n . impl ;

thread t h read w s ta te A ;
f e a t u r e s

The Shared Data : requ i res data access Shared Data . Impl ;
InA : in event por t ;
OutA : out event por t ;

p r o p e r t i e s
D i s p a t c h P r o t o c o l => P e r i o d i c ;
Per iod => 500 Ms ;
Compute Execut ion Time => 0 ms . . 200 ms ;
Dead l ine => 500 Ms ;

end t h read w s ta te A ;

Listing 2. pbr case study in AADL: application process

2) The Application Process Component:the Applica-
tion process is presented in listing 2. Sectionfeaturesde-

scribes its interface:event portsfor in/out communication
to halt/resume the thread execution. Two concurrent threads,
ThA and ThB, manage the application context (component
The_Shared_Data) and take care of variables consistency.

Listing 2 also describes one of these thread interface
(thread_w_state_A) and its properties (period, etc).

3) The SharedData Data Component:Since the appli-
cation context is manipulated by two threads, we use the
AADLv2 dedicated pattern to specify shareddata compo-
nents. ConcurrencyControl Protocol selects a concurrency
management policy supported by the AADL runtime (here,
Priority Ceiling). Provides subprogram accessdefines the
subprograms to be used to access data that will be required
by threadsThA andThB. This is depicted in listing 3.

data Shared Data
f e a t u r e s

Update : prov ides subprogram access Update ;
Read : prov ides subprogram access Read ;

p r o p e r t i e s
P r i o r i t y => 240;
C o n c u r r e n c y C o n t r o l P r o t o c o l => P r i o r i t y C e i l i n g ;

end Shared Data ;

data Shared Data . Impl
subcomponents

S t a t e : data ;
UpdateSpg : subprogram Update ;
ReadSpg : subprogram Read ;

connec t ions
Cnx1 : subprogram access UpdateSpg−> Update ;
Cnx2 : subprogram access ReadSpg−> Read ;

end Shared Data . Impl ;

Listing 3. PBR case study in AADL: shared data

4) The Replica Controller Process Component:The replica
controller process (see listing 4) contains a thread synchroniz-
ing actions.Connectionsshow the links between this thread
and the replica controller process throughports.

p rocess R e p l i c a C o n t r o l l e r
f e a t u r e s

SshotRcv : in event data S t a t e ;
SshotSnd : out event data S t a t e ;
I s P r i m a r y : in event por t ;
I sBackup : in event por t ;
I s E l e c t i o n : in event por t ;
. . .

end R e p l i c a C o n t r o l l e r ;

p rocess implementat ion R e p l i c a C o n t r o l l e r . imp l
subcomponents

ThA : thread t h r e a d s n a p s y n c
in modes (Pr imary , E l e c t i o n , Backup) ;

connec t ions
por t ThA . SshotSnd−> SshotSnd in modes (Pr imary) ;
por t SshotRcv−> ThA . SshotRcv in modes (Backup) ;
. . .

modes
Pr imary : i n i t i a l mode ; −− modes
Backup : mode;
E l e c t i o n : mode;

Backup −[I s E l e c t i o n]−> E l e c t i o n ; −− t r a n s i t i o n s
E l e c t i o n −[I sBackup]−> Backup ;
E l e c t i o n −[I s P r i m a r y]−> Pr imary ;

end R e p l i c a C o n t r o l l e r . imp l ;

Listing 4. PBR case study in AADL: Replica controller process

We focus here on the description of the different execution
modes of the process. Properties, components and connection
can be mode-specific. The keywordsin modesallow to specify
the mode in which the component is involved.

The operational modes of replicas described in II are
primary, backupandelection. Mode transitions are explicitly
defined asmode init − [event triggered]−> mode f inal.

Mode switch is synchronized with events occurring from
ports. When the replica controller inbackupmode receives a
IsElectionevent, then the it switches to theelectionmode.

B. Checkpoint synchronization and watchdogs

The checkpointing service has to enforce a rendez-vous. It is
has to block threads until all participants reached the rendez-
vous. Then the controller saves the copy of the application
state, and releases application thread executions.

The two reasons for suspending a thread are when it is
waiting for a dispatch trigger, or for a shared resource. In the
first case, it is easy to control how the thread is wake-up by
sending an event on one of its ports. A thread will reach such
dispatch state at the end of a call sequence. These particular
states can be used to set up rendez-vous between threads.

In the second case, a Concurrency Control Protocol de-
fines how critical sections assciated to shared data should
be protected. One of the proposed protocol uses subpro-
grams implementing the usual lock and unlock primitives
(mutexes) to enforce mutual exclusion. These primitives can
be used to program more complex synchronization services.
So, synchronizations can be either defined at the thread or
subprogram level but through different mechanisms. Next
section highlights the fact that describing the implementation
”from scratch” with rendez-vous is easier at the thread level.

The heartbeat watchdogs are often implemented with soft-
ware timers. No timer services are directly available in AADL.
Nevertheless, the concept of dispatch on timeouts can be found
in the AADL-BA. We show in next section how to define a
watchdog as an additional dispatch condition for the replica
controller thread component.

IV. AADL B EHAVIOR SPECIFICATIONS

The AADL Behavior Annex is an extension to specify the
behavior attached to AADL components. It intends to refine
the implicit behavior specified in the core of the language.
Thus, it is possible to attach abehavioral specificationto each
AADL component using AADLannex subclauses.

The AADL-BA defines several languages. A state/transition
automaton describes component behavior. A dispatch con-
dition language refines thread dispatch behavior. An inter-
action operations language specifies component interactions
as communications through ports, parameters, subprogram
calls, etc. A behavior action language describes actions tobe
processed when transition triggers. Finally, an expression lan-
guage provides logical, relational and arithmetic expressions
to manipulate variables. In this section, we do not detail the
expression language which syntax is very close to the one
provided by Ada.

A. The Behavior Specification

A behavior specificationis expressed as a state transition
automaton with guards and actions. Guards and actions use
variables to manipulate data.

The automaton specifies the sequential execution behavior
of subprogramand dispatch protocol. Input and output be-
havior of AADL threadsor devices, dynamic behavior of a
processor a systemcan also be expressed by an automaton.

Local variables (non-persistent) are used to save inter-
mediate results. State variables referencing an AADL data
component orpersistentcan be used to reduce the size of
the state automaton by keeping track of counts for instance.

A behavior automaton starts from aninitial state and termi-
nates in afinal state.Completestate represents a suspend/re-
sume state out of which threads and devices are dispatched [6].
Remaining states are called execution state and represents
intermediate state of the automaton.

A transition represents a change from the current source
state to a destination state. A transition is activated whenits
dispatch or execute condition is evaluated to true. Then the
attached action is executed.

Dispatch condition affect the execution of a thread based on
external triggers. Execute condition models behavior within
an execution sequence of a thread, subprogram or other
component. They are based on input values from ports, shared
data, parameters, and behavior variable value [6].

1) Subprogram Behavior Specification:The initial state
represents the starting point of a call. The final state repre-
sents the completion of a call. The automaton describes the
execution behavior of a subprogram with one or more return
points [6]. Its has one or more intermediate execution states
but no complete state.

2) Thread and Device Behavior Specifications:The behav-
ior automaton of thread or device describes: one initial state
representing the state before initialization actions; oneor more
complete state representing halt/resume state; zero or more
intermediate execution state and one final state representing
finalization completed by thread or device.

The behavior of a thread dispatch is a dispatch condition
evaluates to true. Then, the thread dispatches and transition
(outgoing of a complete state) is taken. Actions associated
to the transition is performed. Periodic dispatches are im-
plicit. Sporadic dispatches can be triggered by the arrival
of event, data, event data on ports or the call to provides
subprogram access features. AADL-BA describes timeout for
thread dispatch with the use ofon dispatch timeoutas dispatch
condition. Timeout is a dispatch trigger condition raised after
the specified amount of time since the last dispatch [6].

3) Other Component Behavior Specifications:The automa-
ton of other components (process, processor, etc) starts with
one initial state representing the state before initialization, one
ore more complete states and one final state representing the
state after finalization [6].

4) Component Interaction Behavior Specifications:AADL
threads interact through shared data, connected ports and sub-
program calls. AADL-BA provides mechanisms to model the

behavior ofevent data, data or eventports. Thus, behaviors
and policies governingdata andevent dataports queues (e.g
dequeue protocol) can be specified.

Frozen ports mechanism can be used to ensure availability
of received data on a port after thread dispatch occurs. Send
and receive outputs through ports can be specified.

The standard defines several ways to model access to shared
data subcomponents (see next subsection).

Finally, interaction between components using supprograms
can be specified by the syntaxMySubrogram!or MySubro-
gram!(param1,...paramN). This call to subprogram access is
defined in the actions attached to transitions.

B. Chekpointing Implementation

1) Shared Data Semantics:The standard defines three ways
to model critical section in order to access shared data.

a) The smaller action block:A smaller action block
encapsulates the shared data subcomponent reference with the
use of ’{’ and ’}’ characters as delimiters. If an action block
contains references to several shared data subcomponents,then
resource locking (resp. unlocking) will be done in the same
(resp. reverse) order as the occurrence of the references tothe
shared data subcomponents [6].

b) Provides subprogram access:Appropriate provides
subprogram access of the corresponding shared data com-
ponent can be called in actions associated to transitions.
They must be explicitly defined to implement the concurrency
control protocol which coordinates accesses to shared data.

c) Get resource and releaseresource runtime services:
Get resourceand releaseresourceruntime services specified
in the runtime support of the AADLv2 standard [1] can be
manually inserted in actions attached to transitions.

According to the AADLv2 standard, the user can also
provide specific implementations ofget resource and re-
lease resourceat execution platform level.

The small block action is easy to use. It allows implicit
and automatic placement ofget resourceandreleaseresource
services by the use of ’{’, ’ }’. However concerning modeling
complex critical section as multiple data shared and multiple
lock/unlock, the semantic defined is not precise enough.

The use of provides subprogram access implies to check
all subprogram access and implementation to avoid run-time
violation. So, systems analysis becomes more complex.

The use of get resource and releaseresource run-time
services is very expressive to model access to critical section.
The user can specify easily with subprogram calls where is
the begin and the end of the section.

However the use of multiple critical section and/or multiple
shared data is not trivial to model. Subprogram behavior
automaton without complete state reflected the fact that a
subprogram can not be blocked. So, if the user specifies it
ownsget resourceand releaseresourceimplementation then
it is not possible to describe the subprogram behavior. Thisis
a problem for the system analysis.

Finally, according to different semantic of the annex, we find
that modeling a critical section is a complex problem. So, in

our case we choose to use the AADL port and its semantic to
model the checkpointing mechanism.

2) Modeling Challenge and Complexity:Synchronization
for checkpointing requires to specify a complex synchro-
nization mechanism between threads. We have mentioned in
section III that the core AADL allows the description of
synchronization mechanisms between shared resources (data).
Subprogram accesses or events sent on connected ports are
also involved to model these check-pointing mechanisms.

The listing 5 depicts the behavior automaton of thread
thread w state A contained in the application process. The
thread behavior automaton has one initial statesi, two com-
plete statess1, s2 and one final statesf.

annex b e h a v i o r s p e c i f i c a t i o n {∗∗
s t a t e s

s i : i n i t i a l s t a t e ;
s1 , s2 : complete s t a t e;
s f : f i n a l s t a t e ;

t r a n s i t i o n s
s i −[]−> s1 { I n i t S p g ! } ;
s1 −[on d ispa tch]−> s2 { Computat ion1 ! ;

OutA ! } ;
s2 −[on d ispa tch InA]−> s1 { Computat ion2 ! } ;

∗∗} ;

Listing 5. PBR case study in AADL-BA: thread behavior autamaton

When the transitionsi to s1 triggers, theInitSpgsubprogram
specified in the actions section (’{’...’};’) initialized the thread.

Complete statess1 and s2 are waiting states used when
the thread waits for dispatch (execution). At the first dispatch,
the transitions1 to s2 triggers and the actions attached to the
transition are executed. Thus the subprogramComputation1is
invoked and theOutA! produces an event on the event port
OutA. This signal releases the thread which has completed its
works and waits ins2 for a signalInA to resume.

The synchronization protocol is described through transi-
tions triggered and actions executed betweens1 and s2. s2
is the rendez-vous state.OutA event is the notification that a
thread reach the rendez-vous.InA is the event received when
checkpoint is completed.

C. Heartbeats Protocol Implementation

This subsection describes how to use AADL-BA to model
the behavior of the heartbeats protocol using AADL-BA
timeout for backup replicas.

The heartbeat protocol used in the PBR architecture relies
on a timeout that is triggered once the specified amount of
time since the last dispatch has expired. The timeout value is
given by thePeriod property of the thread.

Listing 6 depicts the behavior automaton of the thread
contained in the replica controller process (backup replicas)
including timeout. We give a simple description for better
understanding. Thestatessection declaressi as initial state
(before thread initialization),s1 as complete state (for dis-
patch) andsf as final state.

When the thread starts, initialization is due by invoking
the InitSpg subprogram. The transition starts from the initial
statesi and stops in thes1 complete state. When the thread

receives a InA event, the condition on dispatch InA is true,
the transition betweens1 to itself triggers.

Thus,ReceiveSnapshotandStoreSnapshotsubprograms are
called (see actions section attached to the transition).

annex b e h a v i o r s p e c i f i c a t i o n {∗∗
s t a t e s

s i : i n i t i a l s t a t e ;
s1 : complete s t a t e;
s f : f i n a l s t a t e ;

t r a n s i t i o n s
s i −[]−> s1 { I n i t S p g ! } ;
s1 −[on d ispa tch InA]−> s1 { Rece iveSnapsho t ! ;

S t o r e S n a p s h o t !} ;
s1 −[on d ispa tch t imeout]−> s f { O u t E l e c t i o n ! } ;

∗∗} ;

Listing 6. PBR case study in AADL-BA: timeout

We focus now on the dispatch timeout. According to the
semantics of the AADL-BA the timeout occurs when the
period of the thread expired. The thread is in states1when the
timeout triggers. If the backup replica controller processdoes
not receive the snapshot (i.eInA) then the timeout triggers.
The transition betweens1 andsf with theon dispatch timeout
condition occurs. The performed action (OutElection!) is the
emission of an event on the OutElection out event port. This
event is transmitted to other backup replica controller process.
Then the reception of this event triggers the mode change into
replica controller process.

V. CONCLUSION

Due to the recent publication of AADLv2 and AADL-BA, it
is of interest to check if engineers can use both AADLv2 and
AADL-BA safely (e.g. in a consistent way). For that purpose,
we model the Primary Backup Replication strategy (PBR) that
is a typical fault-tolerant mechanisms for Distributed Real-
Time and Embedded systems.

We successfully modeled the PBR architecture but the point
was to detail the behavior of its building blocks,i.e. the replica
controllers. Both thread and subprogram behavioral models
should be accurate enough to describe complex synchroniza-
tion scenarios. We detailed the PBR checkpointing mechanism
through thread and subprogram models. Yet, we identified
potential issues in subprogram behavioral models. We plan
to propose errata to clarify the behavior of the subprogram
synchronization primitives.

REFERENCES

[1] SAE, Architecture Analysis & Design Language v2.0 (AS5506), Sept.
2008.

[2] H. Zou and F. Jahanian, “Real-time primary-backup replication with
temporal consistency guarantees,” in18th Int. Conf. on Dist. Computing
Systems (18th ICDCS’98). The Netherlands: IEEE, May 1998.

[3] R. S. M. Pease and L. Lamport, “Reaching agreement in the presence of
faults,” JACM, vol. 27, no. 2, pp. 228–234, Apr. 1980.

[4] D. de Niz and P. H. Feiler, “Verification of replication architectures in
AADL,” in ICECCS. IEEE Computer Society, 2009, pp. 365–370.

[5] G. Lasnier, B. Zalila, L. Pautet, and J. Hugues, “OCARINA: An Envi-
ronment for AADL Models Analysis and Automatic Code Generation for
High Integrity Applications,” inReliable Software Technologies’09 - Ada
Europe, Brest, France, Jun 2009.

[6] SAE, Annex X Behavior Annex (AS5506-X draft-2.11), Sept. 2009.

