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Abstract: Avionics systems must be carefully  
designed due to their criticality since fault may lead 

to loss of life. These systems must be verified and 
certified. However, design of avionics architectures 
becomes more and more complex due to an 

increasing demand of new functionalities. It makes 
very difficult to analyze systems and detect potential 
faults that may cause damages. 

This paper presents an approach to model and 
validate avionics systems. Architecture 
requirements, properties and constraints are 

described with the Architecture Analysis and Design 
Language (AADL) and its associated ARINC653 
annex. Then, we apply validation rules to check 

system correctness and constraints enforcement. 
This approach provides a high-level view of the 
system and eases the development of avionics 

system by validating their requirements at a model-
level, before any implementation efforts  

Keywords: AADL, ARINC653, validation, model-

based, Ocarina, REAL. 

 

1. Introduction 

 
Context Safety-critical systems have strong 
requirements to be enforced all over the 

development process. To prevent damages from 
occurring errors, safety-critical architectures are 
based on dedicated services isolating software 

components and enforcing safety requirements.  
The ARINC653 standard addresses such 

issues and introduces the concept of partitioned 

architectures for the design of avionics software. The 
main purpose is to increase system reliability and 
dependability. To do so, ARINC653-compliant  

operating systems (OS) isolate software components 
in terms of space and time and provide fault  
detection/recovery mechanisms. They also provide  

configuration tables to associate recovery  
procedures with each potential fault that may occur 
at runtime.  

 
Problem We identify three problems in the design of 
ARINC653 architectures in terms of representation 

and analysis.  

First, it is difficult to design ARINC653 
architectures due to their amount of requirements 

and their associated services (communication, fault  
management, etc.). Since the ARINC653 standard 
does not provide an abstract representation of the 

architecture, ARINC653 systems analysis and 
review are made by means of code analysis, which 
is tedious, error-prone and OS dependent.  

Second, critical services of ARINC653 
architectures and OS must be analyzed before 
implementation efforts. These services (hierarchical 

scheduler, fault recovering, etc.) must be 
automatically validated to ensure that specified  
requirements can be fulfilled.  

Third, the partitioning strategy must be 
verified to check that failure in a partition cannot  
affect another one. This is of particular interest since 

ARINC653 architectures can host components 
having different criticality levels. Thus, a fault that  
occurs in a component at a given criticality can 

impact other components at a higher criticality level.  
This behavior must be detected and avoided as soon 
as possible in the development process. 

 
Proposed Approach To overcome these problems, 
we propose to model and validate ARINC653 

systems to check for safety requirements. To do so, 
we rely on a modeling language providing an 
appropriate semantics for safety-critical architectures 

with isolation requirements. We need a modeling 
language that enables automation of verification 
efforts.  

Among currently proposed languages, the 
Architecture Analysis and Design Language (AADL) 
introduces a component-based approach to describe 

both hardware and software aspects of the system. It 
defines several components that are aggregated by 
engineers to model the system according to its 

requirements and properties.  
This paper proposes an approach to model 

and validate ARINC653 systems with AADL. This  

new representation of this kind of architecture eases 
system analysis and validation.  

We describe ARINC653 partitioned 

architectures with their time and space isolation 
concerns (hierarchical scheduling, partitions 
confinement in memory segments, etc.). Modeling 

patterns are based on the last version of the AADL 
(version 2). It introduces new components relevant  
for the modeling of ARINC653 constraints. These 
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patterns are being integrated in the AADL standard 

as an annex document (the ARINC653 annex).  
We also int roduce validation rules to enforce 

ARINC653 requirements in AADL models. These 

rules check for isolation correctness (memory, 
scheduling, and communications requirements) as  
well as potential impact between components having 

different criticality levels.  
We then show how these modeling patterns 

and associated verification rules can help systems 

designers to develop safer systems. We also present  
the tools that support our modeling patterns and our 
verification rules. 

 
Outline Section 2 presents the ARINC653 standard 
and the specific services and requirements of 

ARINC653 architectures and OS. Section 3 
introduces the AADL modeling languages and 
describes our modeling patterns to model ARINC653 

architectures. Section 4 details ARINC653 
requirements validation using AADL models. It first 
presents our AADL-dedicated validation language,  

REAL, and details its use for ARINC653 systems 
validation. Finally, section 5 concludes and gives an 
overview of incoming work on this topic. 

2. ARINC653 

2.1. Overview of the standard 
ARINC653 [1] is an industrial standard that  

defines a set of services for the design of safety-
critical avionics systems. The main principle consists 
in partitioning applications according to their 

criticality level. A partition is isolated in space and 
time and executes software components as if it was 
running on a dedicated processor.  

  

 

Figure 1 - Overview of an ARINC653 system  

 
Partitions are executed on top of a dedicated 

kernel/middleware: the ARINC653 module. The 
conceptual model behind ARINC653 is illustrated in 
figure 1. In this example,  the system contains two 

partitions with different criticality levels: the one of 
partition 1 being higher than the one of partition 2. A 
connection between the two partitions is supervised 

by the ARINC653 module to ensure that data sent by  
partition 1 is only received by partition 2.  

The module handles both partitions time and 

space isolation. As a consequence, it manages 

address spaces (to store and isolate partitions code 

and data) and time slots (to execute partitions).  
 

2.2 Time and space partitioning policies 

ARINC653 isolates applications so a failure 
in a partition cannot affect other partitions that run on 
the same processor. This isolation is achieved 

through two partitioning policies:  
1. Time partitioning: each partition is executed 

during a fixed and pre-defined time slice. The 

ARINC653 module schedules partitions using a 
cyclic algorithm repeated at a given period,  
called the major time frame. Typically, the value 

of the major time frame is equal to the sum of 
partitions time frames. At each major time frame, 
inter-partitions communication buffers are also 

flushed (data sent by one partition is available to 
its recipients). 

2. Space partitioning: each partition owns a 

dedicated address space for its execution. In 
addition, inter-partitions communications are 
supervised by the module. This ensures that  

only allowed entities exchange data through a 
communication channel.  

 

 
2.3 Services  
 

The following subsections detail ARINC653 services. 
 
2.3.1. Intra-partition communication services  

Intra-partition communication services 
propose interfaces to enable communication 
between ARINC653 processes, located in the same 

partition. They do not use any module/kernel service 
and remain internal to the partition.  

The standard defines four mechanisms: 

1. Buffer stores multiple messages in message 
queues. Two queuing policies are proposed 
(FIFO, Priority).  

2. Blackboard stores one instance of a message 
until it is cleared or overwritten by a new 
instance. 

3. Event is a notification service to indicate the 
completion of a job (wait/notify concept).  

4. Semaphore service is used to control access to 

shared resources (e.g. counting semaphores).  
 
2.3.2 Inter-partition communication services 

Inter-partitions communication services propose 
functions to exchange data across partitions. They 
are supervised by the module, which ensure data 

transport. Communication policy (list of connected 
partitions) is statically defined by the system 
designer so that partitions cannot create covert  

channels. 
Inter-partitions communications are flushed at  

each major time frame: data sent by  a partition is  
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only received by its recipients during the next 

scheduling period. This behavior ensures 
communication determinism and eases buffers  
dimensioning. 

The standard defines the following inter-partition 
communication functionalities: 
1. Queuing ports store multiple messages in 

queues. This service behaves like the buffer 
service.  

2. Sampling ports carry successive updated 

messages of the same type. They are similar to 
the blackboard. 

 

2.3.2 Health Monitoring service 
The health-monitor service defines mechanisms to 
catch potential errors  at run-time. Errors can be 

caught at different levels (module/kernel, partition,  
process/task), depending on their nature 
(scheduling, execution error, etc.) and the 

component they are issued from (module, partition or 
process).  
For each potential error, the system designer 

specifies an appropriate recovering policy (for 
example, restart or stop the faulty component) in 
order to keep the system stable. He can also provide 

a dedicated recovery procedure. 
 
2.4. ARINC653 systems constraints 

 
Due to their partitioning policy, ARINC653 systems 
have strong requirements that must be validated:  

 

 Time isolation policy must guarantee that: 
1. Each partition is scheduled at least one time 

during each scheduling period.  
2. The value of the major time frame is  

consistent with partitions time frames. 

 Space partitioning policy must allocate a distinct 
memory segment for each partition.  

 Health Monitoring (HM) policy must ensure that  all  
potential faults are bound to a recovery policy. 

Designers must ensure that each level of the 
layered architecture (module, partition, process) 
uses a recovering policy for each potential fault.  

 
 Such a validation is difficult to achieve hrough 
code review since it requires a good knowledge of 

the ARINC653 operating system internals. In 
addition, it is of special interest to analyze 
ARINC653 architectures at a specification-level. It  

helps certi fication engineers by finding faults that are 
difficult to detect, such as the impact between 
partitions evaluated at different criticality levels. For 

example, a partition at a low criticality level could 
impact another evaluated at a higher criticality level 
through a communication channel. If a fault is raised 

in the first partition, it could stop sending data to the 
other. The absence of fresh data in the highest-
critical partition could lead to an application error. As 

a consequence, the fault raised in the lowest-critical 

partition is propagated to the highest one. For that  
reason, impacts of faults between partitions having 
different criticality levels must be analyzed.  

3. Modelling ARINC653 architectures 

 
3.1. Introduction to architecture modeling with AADL 

 
AADL [2] is a standard published by the 

Society of Automotive Engineers (SAE). It defines a 

component-centric language to model both software 
and hardware components. It focuses on the 
definition of block interfaces, and separates the 

implementations from these interfaces.  
An AADL description is made of 

components. The standard defines software 

components (data, thread, thread group,  

subprogram, process), execution platform 

components (memory, bus, processor, device,  

virtual processor, virtual bus) and hybrid 

component (system). 

Components describe elements of the 

architecture. Subprograms model application code.  

Since it is not an architectural element, it is reduced 
to a reference to another external piece of code.  

Threads model the active part of an application 

(such as POSIX threads). Processes model 

address spaces containing threads. Processors 

model micro-processors and a minimal operating 

system (mainly a scheduler). Virtual 

processors model a part of the processor and 

could be understood in different ways: part of the 
physical processor, virtual machine, etc. Memories  

model hard disks, RAMs. Buses model networks, 

wires. Virtual buses are not formally a hardware 

component, they are bound to connections in order 
to describe their requirements. They can be used for 
several purposes (modeling protocol stacks, security 

layers, etc.). Devices model sensors or actuators. 

Systems represent composite components that are 

build from hardware components, software 
components or a combination of the two. For 
example, a system may represent a board with 

multiple processors and memory chips. 
Components hierarchy of an AADL model is  

composed of several  components and sub-

components. The topmost component is an AADL 
system that contains processes, processors  

and other architecture components. 
The interface specification of a component is  

called a type and provides features (e.g.  

communication ports). Components communicate 
one with another by connecting their features (the 

connections section). Each component describes 

their internals: subcomponents, connections 
between these sub-components, etc. 
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An implementation of a thread or a 

subprogram component can specify call sequences 

to other subprograms, thus describing the execution 

flows in the architecture. Since there can be different  
implementations of a given component type, it is 
possible to select the actual components to be put  

into the architecture,  without having to change the 
other components, thus providing a convenient  
approach to application configuration.  

AADL allows properties to be associated 
with AADL model elements. Properties are typed 
and represent name/value pairs that represent  

components characteristics and constraints. 
Examples are the period and execution time of 
threads, the implementation language of a 

subprogram, etc. The standard includes a pre-

declared set of properties and users can int roduce 

additional properties through property definition 
declarations. For interested readers, an int roduction  
to the AADL can be found in [3]. 

Other languages can be integrated in AADL 
models by means  of annex libraries. These 
languages can be added on each component to 

describe other aspects. Some annex languages 
have been designed, such as the behavior annex 
[11] or the error model annex [12]. It provides a 

convenient way to specify other aspects of the 
system (fault propagation, behavior, etc).  

AADL provides two major benefits for 

building safety-critical systems. First, compared to 
other modeling languages, AADL defines low-level 
abstractions including hardware descriptions. 

Second, the hybrid system components help 

refining the architecture as they can be detailed later 

on during the design process. 
 
3.2 ARINC653 modeling patterns  

 
This section presents patterns we designed for the  
modeling of ARINC653 [1] architectures. It follows 

the same organization as section 2.3. This work is 
also included in the ARINC653 annex document of 
the AADL, proposed for standardization by SAE. 

 
3.2.1 Mapping partitions 

An ARINC653 module (see section 2.1) is  

represented in AADL by means of a processor  

component. It models the underlying ARINC653 
module that provides time and space isolation. It  

contains partitions runtime as subcomponents and 
defines isolation requirements with AADL properties. 

 

Partitions are specified with two AADL components: 
1. A virtual processor for the modeling of 

runtime concerns (tasks scheduling, partition 
resources, etc). 

2. A process that describes the content of the 

partition (thread, data, etc). 

The association between these components is 

defined with the Actual_Processor_Binding  

AADL property. The virtual processor is  

contained in a processor to model its containment  

in its related module.  

Space isolation (memory segments  
allocation) is specified by associating the process  

to a memory component with the AADL property 

Actual_Memory_Binding. Memory components 

describe segment requirements (size, etc). 

 
3.2.2 Mapping ARINC653 processes  

AADL threads model ARINC653 

processes because they share the same concept: an 
instruction flow constrained by some requirements 

(period, deadline, execution time and so on  – 
described with AADL properties). ARINC653 
processes are contained in a partition so that AADL 

threads are contained in an AADL process. 

Inter and intra-partition communications are 
mapped in AADL by connecting components ports. 

When two connected threads  belong to the same 

process, the connection models an int ra-partition 

service. When they belong to distinct process 

components, it represents an inter-partition 
communication channel.  
 

3.2.3 Mapping intra-partition communication 

An ARINC653 buffer is represented with a 
connection of AADL event data ports between 

AADL thread components. 

Modeling of ARINC653 blackboards is made 
with the connection of AADL data ports between 

several AADL threads. AADL data ports do not  

queue data; and thus, are semantically equivalent to 

the concept of ARINC653 blackboards.  
ARINC653 events are described using AADL 

event ports between several AADL thread  

components. AADL event ports queue signals  

without any data. Thus, this concept is the same as 

the ARINC653 events.  
The ARINC653 semaphore mechanism is 

represented using a shared AADL data component  

between several AADL threads. The concurrency 

characteristic of the semaphore is specified using 

the Concurrency_Control_Protocol property.  

 
3.3.4 Mapping inter-partition communication 

An ARINC653 queuing port is represented 

by connecting AADL event data ports between 

several AADL process components. AADL event 

data ports queue incoming data with respect to a 

given queuing policy, which corresponds to the 
concept of ARINC653 queuing ports. 

The modeling of ARINC653 sampling port  
service is achieved with the connection of AADL 
data ports between several AADL process  
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components. AADL data ports do not queue data 

and thus, are semantically similar to ARINC653 
sampling ports. 

AADL properties are associated to ports  to 

specify their characteristics (queuing policy, etc.). 
 

3.5 Health monitoring mapping 
The Health Monitoring service detects faults  

at different levels (module, partition, process) and 

executes a recovering procedure for each one. For 
its description with AADL, we int roduce a property to 
represent faults (ARINC653::HM_Errors) and 

associate it with another property that models  
recovering procedures (ARINC653::HM_Actions).  

Both properties are associated to a component  
(processor, virtual processor or thread) 

that models a layer of the ARINC653 architecture 
(respectively module, partition or process). 
 

3.6 Example 
The modeling of an ARINC653 system with 

AADL is illustrated in figure 2. Two partitions 

(isolated in a memory segment)  are executed on top 
of an ARINC653 module. One partition sends data to 
the other (an inter-partition channel).  

The ARINC653 module is depicted with the 
AADL processor (arincmodule) and contains two 

virtual processor components (part1_rt  and 

part2_rt) that represent partitions execution 

environment. Partitions content is specified using an 

AADL process, each partition having its own 

(prs_sender for the first partition, prs_receiver  

for the second).  
An AADL component (main) models the 

organization of the memory with its segments (AADL 
memory sub-components). Partition address spaces 

(AADL process components) are then associated 

with them to specify the space isolation policy. 
Each partition (AADL process) contains  

one task (an AADL thread component ). We 

introduce an inter-partition communication channel 

between the partitions to model an inter-partition 
communication channel.  

Partitions are connected using AADL data 

ports. According to our modeling patterns, this 

communication mechanism is an ARINC653 

sampling port.  

 

Figure 2 - ARINC653 example with AADL 

4. ARINC653 architectures validation 

This section shows how we use a constraint  
language to enforce in critical systems: time 
isolation, fault coverage and assessment of the all  

the fault-recovery strategy. 
 
4.1. Introduction to REAL 

 
REAL [13] (Requirements Enforcement Analysis 
Language) is a constraint-based language for AADL. 

It aims at checking constraints on architectural 
descriptions at the specification step, saving 
significant time over verification at execution time.  

REAL concept is similar to formal methods 
such as B [14] by checking requirements on a set of 
elements using a dedicated language. It allows one 

to build sets whose elements are AADL entities 
(connections, components or subprogram calls).  
Verification can then be performed on either a set or 

its elements by stating Boolean expressions. The 
basic unit of REAL is a theorem. A theorem verifies  
an expression over all the elements of a set that is  

called the range set. 

In order to write complex expressions, one 
can use predefined sets, which contain the instances 

of the AADL model of a given type, or build 
intermediary sets, using relations between elements 
of sets (e.g. returns the elements of the set A which 

are subcomponents of any elements of the set B).  

Finally, subtheorems calls can be used to 
build local or global variables, or to check pre-

required constraints on the model. Callee theorems 
inherit at run-time from the caller environment (the 
local_set), and the user can pass parameters. Thus, 

it is possible to design a library of theorems that will  
be used by higher-level, user-defined theorems. 
Such work has been done for schedulability analysis, 

response-time analysis and software-hardware 
adequacy. 

A basic example of a REAL theorem is  

illustrated in listing 1. This theorem checks that all  
processor components contained in the model 

have at least one virtual processor. On the model in 
figure 2, this theorem is verified: the main processor 
(arincmodule) contains two virtual processors  

(part1_rt and part2_rt). 

 
theorem Processor_Contains_Partitions_Runtime 

  foreach cpu in Processor_Set do 

    vps := {x in Virtual_Processor_Set | 

        Is_Subcomponent_Of (x, cpu)}; 

 

    check (Cardinal (vps) > 0); 

end Processor_Contains_Partitions_Runtime; 

Listing 1 – REAL theorem example 
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Next sections present theorems to verify  

ARINC653 constraints (c.f section 2.4) using AADL 
models.  
 

4.2. Time isolation 
 
Time isolation is enforced by validating that:  

1. Each partition contained in an ARINC653 
module is executed at least one time during 
each scheduling period.  

2. The consistency of the major time frame 
according to partitions time frames.  
 

The first theorem (listing 2) checks that each 
processor component (ARINC653 module) 

references at least one time each contained 
virtual processor (ARINC653 partition) in its 

allocated time frames (AADL property 

ARINC653::Slots_Allocation). Its validation 

ensures that each partition is executed at least one 

time during each period.  
  

theorem Partitions_Execution 

  foreach cpu in Processor_Set do 

    vps := {x in Virtual_Processor_Set | 

        Is_Subcomponent_Of (x, cpu)}; 

    check (Is_In 

      (vps,Get_Property_Value  

         (cpu, “ARINC653::Partitions_Slots”))); 

end Processor_Contains_Partitions_Runtime; 

Listing 2 – Theorem for partition execution 
enforcement 

 

The second theorem (listing 3) checks that the 
major time frame of each AADL processor  

component (ARINC653 module) is equal to the sum 
of partitions time frames (property ARINC653:: 

Partitions_Slots).  This ensures that the 

scheduling period is consistent with partitions time 
frames (see section 2.2 for a description of the 

requirements of the major time frame).  
 
theorem Scheduling_Major_Frame 

 foreach cpu in Processor_Set do 

   Check 

    (Float  

     (Property (cpu,   

                "ARINC653::Module_Major_Frame"))  

      =  

      Sum (Property (cpu,   

           "ARINC653::Partition_Slots")))); 

end Scheduling_major_frame; 

Listing 3 – Theorem for ARINC653  

major time frame validation 

 
4.3. Space isolation 

 
To ensure space isolation, we have to verify that  
each memory segment is associated with a single 

partition.  Theorem on listing 4 checks that each 

AADL memory component (a segment of the main 

memory) is associated with a single AADL process  

component (which contains partitions resources – 

data, tasks, etc.). 
 
theorem Memory_Bound 

foreach s in System_Set do 

   mainmem := 

    {y in Memory_Set|Is_Subcomponent_Of (y, s)}; 

   partmem := 

    {x in Memory_Set|Is_Subcomponent_Of  

    (x, mainmem)}; 

   partitions := 

       {x in Process_Set | Is_Bound_To (x, 

partmem)}; 

   check (Cardinal (partitions) = 1); 

end Memory_Bound; 

Listing 4 – Theorem for the validation 

of space isolation 

 

This theorem also checks model 

correctness, ensuring that system memory is divided 
into several segments. It first retrieves the main 
memory component (mainmem) and analyzes its 

memory sub-components (in partmem) that  

represent memory segments. 

 
By doing so, this theorem ensures that  

system designer divides the main memory into 

several memory segments dedicated to a partition.  
 
 
theorem check_error_coverage 

 foreach thr in Thread_Set do 

  Prs := {x in Process_Set |  

          Is_Subcomponent_Of (thr, x)}; 

  VP  := {x in Virtual_Processor_Set |  

          Is_Bound_To (Prs, x)}; 

  CPU := {x in Processor_Set |  

          Is_Subcomponent_Of (VP, x)}; 

 

  var errors :=  

    List ("Module_Config", "Module_Init",  

          "Module_Scheduling", 

          "Partition_Scheduling",           

          "Partition_Config",  

          "Partition_Handler", "Partition_Init", 

          "Deadline_Miss", "Application_Error",  

          "Numeric_Error", "Illegal_Request",  

          "Stack_Overflow", "Memory_Violation",  

          "Hardware_Fault", "Power_Fail"); 

 

  var actual_errors := 

    (property (CPU, "ARINC653::HM_Errors") + 

     property (VP, "ARINC653::HM_Errors") +  

     property (thr, "ARINC653::HM_Errors")); 

 

  Check (Is_In (errors, actual_errors) and  

         Is_In (actual_errors, errors)); 

end Check_Error_Coverage; 

Listing 6 – Theorem for the validation 
of the fault coverage policy 
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4.4 Fault coverage 

 
In ARINC653 architectures, errors may be raised at  
three different layers of the architecture (module,  

partition, process).  
To check that all faults are recovered, we 

verify that al faults are handled during the execution 

of each ARINC653 process (AADL thread  

component). To do so, the associated theorem 

(listing 6) analyses each thread component  

(process level), its associated process and 

virtual processor components (partition level) 

and the processor that supports the partition 

(module level). 
For each AADL thread component (that  

represents an ARINC653 process), the theorem 

computes the list (in the actual_errors variable) 

of the errors recovered by the thread itself but also 

by its associated virtual processor (ARINC653 

partition) and processor (ARINC653 module).  

Then, it compares this list to the one of all potential 
errors (variable errors) that may be raised in the 

architecture.  
 
theorem Check_Omission_Transient 

 foreach src in process_set do 

  thr     := {x in Thread_Set |  

              Is_Subcomponent_Of (x, src)}; 

  spart   := {x in Virtual_Processor_Set |  

              Is_Bound_To (src, x)}; 

  dst     := {x in Process_Set |  

             Is_Connected_To (src, x)}; 

  dpart   := {x in Virtual_Processor_Set |  

              Is_Bound_To (dst, x)}; 

  var allowed_actions := 

      List ("Partition_Restart", 

            "Process_Restart",  

            "Confirm"); 

  var src_actions := 

    (Property (spart, "ARINC653::HM_Actions") + 

     Property (thr, "ARINC653::HM_Actions")); 

 

  check 

  ( 

   ((cardinal (src) > 0)                   and   

    (cardinal (dst) >= 0)                  and  

    (is_in (allowed_actions, src_actions)) and 

    (max 

      (property(dpart,"ARINC653::Criticality"))<   

     max 

      (Property 

        (spart,"ARINC653::Criticality")))) 

 Or 

 (Not (Is_In(allowed_actions, src_actions)))); 

end Check_Omission_Transient; 

Listing 7 – Theorem for the analysis of 
partitioning policy trade-off, transient errors 

 

4.5 Assessment of the fault-recovery strategy 
 

Another validation theorem checks that a recovery  
procedure in a partition at a low criticality level could 
impact another partition at a higher level. When a 

fault is raised in a process, the recovery policy 

impacts its partition. These entities (processes of the 
partition) stop sending or receiving data to/from the 
other partitions. This could be an issue if they are 

classified at a different criticality level. 
 To detect this issue, we distinguish two 
types of errors: 

 Transient errors are temporary and happen 
when the recovering policy of the sender restarts 
the process or its partition. In that case, data is  

not sent for a temporary period. It impacts 
receiver components for period but once the 
recovering strategy is finalized, the system 

continues to operate as normal.  

 Permanent errors happen when the recovery  
policy stops the process or its partition. Data is  

no longer sent, which can potentially affect 
recipients, especially i f they are classified at  a 
high criticality level. In that case, data will not be 

sent unless the task or its partition is restarted.  
 
theorem Check_Omission_Permanent 

 foreach src in process_set do 

  thr := { in Thread_Set | 

          Is_Subcomponent_Of (x, src)}; 

  spart := {x in Virtual_Processor_Set |  

            Is_Bound_To (src, x)}; 

  dst := {x in Process_Set | 

          Is_Connected_To (src, x)}; 

 

  dpart := {x in Virtual_Processor_Set |  

            Is_Bound_To (dst, x)}; 

  var allowed_actions :=  

     List ("Partition_Stop",   

           "Process_Stop_And_Start_Another",      

           "Process_Stop"); 

  var src_actions := 

   (Property (spart, "ARINC653::HM_Actions") + 

    Property (thr, "ARINC653::HM_Actions")); 

 

  check 

 (( 

   (Cardinal (Src_Prs) > 0)  and  

   (Cardinal (Dst_Prs) >= 0) and  

   (Is_In (allowed_actions, src_actions)) and  

   (Max 

    (Property (dpart,"ARINC653::Criticality")) <  

    Max 

    (Property (spart,"ARINC653::Criticality")))) 

  Or 

 (Not (Is_In (allowed_actions, src_actions)))); 

end Check_Omission_Permanent; 

Listing 8 – Theorem for the analysis of 
partitioning policy trade-off, permanent errors 

 

Analysis of the partitioning policy is illustrated in 
two theorems. The first one (listing 7) detects 
transient errors between partitions having different  

criticality levels. The second (listing 8) detects 
permanent errors.  

They analyze each AADL process  component  

(ARINC653 partitions) and its connected process  

(ARINC653 partitions that receive data from the 

former partition). Then, it retrieves the list of recovery  
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actions (in src_actions) that are used when a 

fault is raised in the source partition (spart).  

Then, this theorem checks that: 

 The receiver is classified at the lower criticality 
level if the fault-recovery policy of the sender 
generates transient data omission.  

 The fault-recovery policy of the sender may not  
lead to transient omission.  
Theorem 8 follows the same validation pattern 

looks for permanent  errors. Compared to theorem 7,  
the values of the allowed_actions variable 

contain recovery actions that imply a permanent data 

omission. 

5. Conclusion 

This paper presents an approach for the modeling 

and validation of ARINC653 architectures. 
 
To do so, we first introduce modeling patterns to 

represent ARINC653 systems and their 
characteristics using the AADL modeling language.  
 

We then define, thanks to the REAL language, a set  
of theorems that check dedicated properties on the 
AADL model. This verification rules allow engineers  

to check for a set of predefined rules ensuring state-
of-the-art correctness properties.  
 

Altogether, these two contributions set up an 
automatable approach to ensure a good design of 
safety-critical systems with regards to safety 

properties. Such an approach is a particular interest 
for avionics systems that rely on partitioned 
architectures and have to fulfill strong certification 

requirements. It helps AADL models to be processed 
by certification tools to system design prior to 
implementation by means of code generation.  
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