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ABSTRACT
Safety-critical systems are widely used in different domains and
lead to an increasing complexity. Such systems rely on specific ser-
vices such space and time isolation as in the ARINC653 avionics
standard. Their criticality requires a carefully driven design based
on an appropriate development process and dedicated tools to de-
tect and avoid problems as early as possible.

Model Driven Engineering (MDE) approaches are now consid-
ered as valuable approach for building safety-critical systems. The
Architecture Analysis and Design Language (AADL) proposes a
component-based language suitable to operate MDE that fits with
safety-critical systems needs.

This paper presents an approach for the modeling, verification
and implementation of ARINC653 systems using AADL. It details
a modeling approach exploiting the new features of AADL ver-
sion 2 for the design of ARINC653 architectures. It also proposes
modeling patterns to represent other safety mechanisms such as the
use of Ravenscar for critical applications. This approach is fully
backed by tools with Ocarina (AADL toolsuite), POK (AADL/AR-
INC653 runtime) and Cheddar (scheduling verification). Thus, it
assists system engineers to simulate and validate non functional re-
quirements such as scheduling or resources dimensioning.

Categories and Subject Descriptors
D.2.1 [Software Engineering]: Elicitation methods, Rapid System
Prototyping; D.2.11 [Software Engineering]: Software Architec-
tures—Domain-specific architectures,Languages

General Terms
Design, Languages, Reliability, Verification

Keywords
AADL, Model Based Engineering, Schedulability, ARINC653, Sim-
ulation, Code Generation, POK, Ocarina, Cheddar
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1. INTRODUCTION
Safety-critical systems are widely used in domains like avion-

ics, aerospace, medicine, and led to an increasing complexity at
different levels. To provide their services, such systems rely on
specific functionalities such as space and time partitioning of the
ARINC653 [4, 9] avionics standard.

The criticality of such systems requires an appropriate develop-
ment process and dedicated tools. A misconception or a failure
can have significant impacts, such as loss of human life. For that
reason, it is important to develop methods and tools that detect po-
tential misconceptions or failures as early as possible in the devel-
opment process. The main idea consists in validating the system,
avoiding possible misconception.

Over the years, several approaches were developed to detect and
avoid potential problems during the conception of safety-critical
systems [15, 8]. They rely on different notations (system model-
ing and analysis, code certification, etc.) and focus on error/fail-
ure detection in order to detect errors as early as possible [8, 38].
However, these approaches rely on different languages and make
difficult their integration in a unified development process. One
solution would use one modeling language as a backbone for the
whole development process.

Model-Driven Engineering (MDE) approaches are now consid-
ered as valuable for building safety-critical systems [32]. They pro-
pose a conceptual framework to capture, validate and implement
systems using models. This technology puts an emphasis on mod-
els and thus offers the possibility to analyze and detect errors earlier
in the software life cycle. This helps to increase reliability and ro-
bustness of safety-critical applications. This is crucial: [39] reports
that at least 70% of errors are introduced during the specification
process and before implementation efforts.

The Architecture Analysis and Design Language (AADL) pro-
poses a component-based approach that fits with safety-critical sys-
tems needs. It is composed of several specialized hardware and
software components that can be extended or refined to model safety-
critical architectures with their requirements and properties. The
use of AADL eases system analysis before implementation. It is
used in several projects (such as Flex-eWare [17] or SAVI [14]) to
model verify or implement safety-critical systems.

However, the semantics of AADL version 1 is not amenable to
represent specific capabilities of some architectures such as the AR-
INC653 ones with respect to their isolation requirements. Such is-
sues were discussed during the revision of the standard and AADL
version 2 [43] now addresses them by introducing new components
and a refined semantics to specify such requirements.



In this paper, we present experiments about the modeling, veri-
fication and implementation of ARINC653 systems using a MDE
approach based on the AADL. The different steps of our approach
are illustrated in figure 1.

We describe the modeling guidelines we elaborated in the AR-
INC653 annex of the AADL standard for the design and analysis
of ARINC653 architectures. We also detail modeling patterns to
describe safety-critical best design practices (for example, the use
of Ravenscar and its constraints at a model-level). This part of
our approach helps designers to create AADL models that describe
ARINC653 architecture (top-ellipse in figure 1).

The Cheddar scheduling analysis tool checks scheduling require-
ments and resources dimensioning (such as buffer sizes). This anal-
ysis step (see left branch in figure 1) should be considered as a ver-
ification tool: it ensures specification correctness regarding system
assumptions (for example: check that a buffer is never full).

Once system requirements are met, implementation code is auto-
matically generated from AADL models with Ocarina (our AADL
tool-suite written in Ada) and POK (our ARINC653/AADL run-
time for C and Ada). This automatic process (see right branch in
figure 1) ensures that implementation code was built according to
the specification and avoids errors traditionally introduced by man-
ual code. Then, generated code runs on top our ARINC653 com-
pliant operating system, POK.

AADL models

System validation
and simulation

Automatic system
implementation

Simulation traces Execution traces

Compare : is execution conform to simulation ?

Figure 1: Proposed approach

Previous work already address scheduling analysis for ARINC653
architectures [45]. In this work, we propose modeling guidelines,
analysis and verification of ARINC653 architectures and carry out
both verification and implementation. In addition, the proposed ap-
proach validates resources dimensions and checks scheduling using
appropriate modeling patterns.

Proposed tools use the same modeling language (AADL) and
do not use different notations. By doing that, we illustrate that a
MDE development process can be driven from the specifications to
the implementation with respect to strong requirements as in AR-
INC653 architectures.

The paper is structured as follow. We first present the ARINC653
standard and the AADL. Then, we detail our modeling guidelines
and patterns for the modeling of ARINC653 architectures. Sec-
tion 4 discusses scheduling verification with Cheddar while the sec-
tion 5 details the automatic implementation of ARINC653 systems
from AADL using Ocarina and POK. Finally, a case-study (section
6) illustrates our toolchain and presents the differences between
simulation and execution traces.

2. CONTEXT
This section gives an overview of the ARINC653 standard. It

details services and emphasizes on scheduling concerns. Then, it
introduces the AADL for the modeling of ARINC653 architectures.

2.1 ARINC653
ARINC653 [4] is an industrial standard that defines a set of ser-

vices for the design of safety-critical avionics systems. The stan-
dard is focused on safety-criticality, by partitioning applications.
Each partition is isolated in terms of time and space and runs as if
it was executed on a single processor. Partitions are executed by a
dedicated kernel/middleware: the ARINC653 module.

Partition 1
Criticality A

Partition 2 
Criticality B

Partitioning kernel
(ARINC653 module)

ARINC node

Figure 2: ARINC653 module with two partitions

The conceptual model behind ARINC653 is illustrated in fig-
ure 2. In this example, the system contains two partitions with dif-
ferent criticality levels, partition 1 has a higher criticality level than
partition 2. A connection between the two partitions is supervised
by the ARINC653 module. It ensures that data are only sent by
partition 1 and only received by partition 2. The module handles
both partitions time and space isolation. In consequence, it man-
ages address spaces (to store and isolate partitions code and data)
and time slots (to execute partitions).

Next subsections detail ARINC653 standard services.

2.1.1 Partitioning services and scheduling policy
ARINC653 isolates applications so a failure in a partition cannot

affect other partitions that run on the same processor. The isolation
is performed at two levels: time and space.

Time partitioning implies that each partition has a fixed time
frame for its execution. In ARINC653, partitions execution is con-
trolled by the module according to a cyclic and static scheduler.

Space partitioning means that each partition has a dedicated ad-
dress space to store its code and data and that communications be-
tween partitions are supervised by the module.
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Figure 3: ARINC653 hierarchical scheduling example

ARINC653 uses a hierarchical scheduling model with two lev-
els: kernel (or module) level and partition level. The module-level
scheduler is static and executes each partition cyclically at a given
rate. The partition-level is more flexible: the scheduling policy
is defined by the system designer. Thus, each partition can use a
different scheduling policy (static, Round-Robin, Rate Monotonic,
. . . ) to execute their tasks.



An example of a such scheduling policy is depicted in figure 3.
The first partition schedules its tasks with the RM (Rate Mono-
tonic) scheduling protocol while the other partition uses a Round-
Robin protocol. Partitions scheduling specifies that the first parti-
tion is executed for 100ms, then, the second is executed for 100ms.
The partitions scheduler repeats infinitely this scheduling this pat-
tern. Then, during their execution, partitions schedule their tasks
according to their own concerns.

2.1.2 Tasking service ARINC653 Process
The tasking service proposes functions to create tasks (called

processes in the ARINC653 standard) in partitions. Several facil-
ities are described to express specific task requirements (period,
execution time, stack size . . . ).

2.1.3 Intra-partition communication service
The intra-partition communication service proposes interfaces

to enable communication between ARINC653 processes, located
in the same partition. These functionalities do not use any mod-
ule/kernel service and remain internal to the partition. Thus, a
failure on an intra-partition communication cannot affect another
partition. The standard defines four mechanisms:

1. Buffer stores multiple messages in message queues. Two
queuing policies are proposed (FIFO, Priority).

2. Blackboard stores one instance of a message until it is cleared
or overwritten by a new instance.

3. Event is a notification service to indicate the completion of a
job (wait/notify concept).

4. Semaphore service is similar to traditional counting sema-
phores used to control access to shared resources.

2.1.4 Inter-partition communication service
The inter-partition communication service proposes functions to

exchange data across partitions. They are monitored by the module
and the ports routing policy (which partition is allowed to send or
receive on a channel) is statically defined by the system designer.
Partitions cannot bypass the routing policy and create covert chan-
nels.

The standard defines the following inter-partition communica-
tion functionalities:

1. Queueing ports store multiple messages in queues. This ser-
vice is similar to the buffer service but for inter-partition
communication.

2. Sampling ports carry successive updated messages of the same
type. It is similar to the blackboard service for inter-partition
communication.

2.1.5 Health Monitoring service
The health-monitor service defines mechanisms to catch poten-

tial errors during system execution.
Errors can be caught at different levels (module/kernel, partition,

process/task), depending on their nature (scheduling, execution er-
ror, . . . ) and the component that generates it (module, partition or
process).

For each potential error at each level, the system designer spec-
ifies an appropriate recovering policy (for example, restart or stop
the faulty component) in order to keep the system stable. The sys-
tem designer can also make its own recovery procedure.

2.1.6 ARINC653 systems validation needs
Despite the provided mechanisms to improve system reliability

and robustness, several issues must be addressed during the devel-
opment of ARINC653 systems:

• Partitions scheduling. The overall scheduling policy must
be validated to check that tasks have enough time for their
execution.

• Resources dimensioning. The ARINC653 standard defines
services to send or receive data. However, it is necessary to
check that resources dimensions are correct regarding run-
time requirements. Such a validation would avoid an unex-
pected deadlock or crash. For example, checking correctness
of buffers size with regards to runtime requirements ensures
that no task is blocked on a full buffer at execution time.

Such a system configuration is usually achieved with a lot of
tests, after implementation efforts. However, these requirements
can be validated at a design-level, before any implementation work
to reduce testing efforts and to detect errors early in the develop-
ment process. To do so, we need to represent the system with its
requirements and concerns with an appropriate semantics. For that
purpose, we use the AADL, detailed in the next section.

2.2 AADL
This section details the AADL language, depicts an example and

presents an existing toolset used on this case-study.

2.2.1 Overview of the AADL
AADL is a standard published by the Society of Automotive En-

gineers (SAE). It defines a component-centric language which al-
lows the modeling of both software and hardware components. It
focuses on the definition of block interfaces, and separates the im-
plementations from these interfaces. The standard proposes both
graphical and textual representation of the syntax.

An AADL description is made of components. The AADL stan-
dard defines software components (data, thread, thread group,
subprogram, process), execution platform components (memory,
bus, processor, device, virtual processor, virtual bus)
and hybrid components (system).

Components describe elements of the architecture. Subprograms
model application code. Since it is not an architectural element, it
is reduced to a reference to another external piece of code. Threads
model the active part of an application (such as POSIX threads).
Processes model address spaces containing threads.

Processors model micro-processors and a minimal operating sys-
tem (mainly a scheduler). Virtual processors model a part of the
processor and could be understood in different ways : part of the
physical processor, virtual machine, etc.

Memories model hard disks, RAMs. Buses model networks,
wires. Virtual buses are not formally a hardware component, they
are bounded to connections in order to describe their requirements.
They can be used for several purposes (modeling protocol stacks,
security layers, etc.) Devices model sensors or actuators.

Systems represent composite components that are made up of
hardware components or software components or a combination of
the two. For example, a system may represent a board with multiple
processors and memory chips.

Components hierarchy of an AADL model is composed of sev-
eral components and sub-components. The topmost component is
an AADL system that contains processes, processors and other ar-
chitecture components.



The interface specification of a component is called its type. It
provides features (e.g. communication ports). Components com-
municate one with another by connecting their features (the con-
nections section). Each component describes their internals: sub-
components, connections between these sub-components, etc.

An implementation of a thread or a subprogram can specify call
sequences to other subprograms, thus describing the execution flows
in the architecture. Since there can be different implementations of
a given component type, it is possible to select the actual compo-
nents to be put into the architecture, without having to change the
other components, thus providing a convenient approach to appli-
cation configuration.

AADL allows properties to be associated with AADL model el-
ements. Properties are typed and represent name/value pairs that
represent characteristics and constraints. Examples are the period
and execution time of threads, the implementation language of a
subprograms, etc. The standard includes a predeclared set of prop-
erties and users can introduce additional properties through prop-
erty definition declarations. For interested readers, an introduction
to the AADL can be found in [22].

Other languages can be integrated in AADL models by means
of annex libraries. These languages can be added on each compo-
nent to describe other aspects. Some annex languages have been
designed, such as the behavior annex [24] or the error model an-
nex [42]. The error model annex define states of a component, its
potential faults and errors and their propagation in the system.

AADL provides two major benefits for building safety-critical
systems. First, compared to other modeling languages, AADL de-
fines low-level abstractions including hardware descriptions. Sec-
ond, the hybrid system components help refine the architecture as
they can be detailed later on during the design process.

2.2.2 Example of an AADL model
An example of AADL model is depicted in figure 4. The cor-

responding textual model gives more details on the exact property
and data types manipulated, and the type of subprograms to be ex-
ecuted. For sake of conciseness, it is not included1.

thr_sender thr_receiver

prs_sender prs_receiver

linux.rt memory.ram

producer_consumer.example

Figure 4: AADL producer/consumer

In this model, we define two processes that communicate (a basic
consumer/producer example). These processes contain one threads
and are executed in the same processor so they don’t need network
connection to exchange data. Then, each thread calls a subpro-
gram that produces or consumes data.

Here, we can see the deployment specification with AADL: the
bus that transport data is described, as well as processor or memory
assignment. Such an additional information eases the analysis of
the system and its deployment concerns.

1Complete textual examples can be found in Ocarina distribution

2.2.3 Existing AADL toolset
AADL has an extended toolset to model DRE (Distributed Real-

Time Embedded) system, validate their architecture according their
requirements and automatically implement them. At first, the Open
Source AADL Tool Environment (OSATE) [1] provides a com-
plete integration of the AADL into the Eclipse modeling frame-
work. In addition, plug-ins provides validation facilities to check
architecture correctness [23] and system requirements (such as se-
curity [26]). Other validation tools for AADL exist and provides
guarantees crucial in the context of DRE systems (such as schedul-
ing requirements [46]).

On the implementation side, architecture code can can be auto-
matically produced from AADL models. The generated code man-
ages system resources, enables communication across entities and
enforces the requirements of each component (scheduling require-
ments of tasks, output rate for communication, . . . ). Application-
level code (legacy C code or code derived from other modeling
tools) is plugged on top of the generated code to be executed by
generated tasks.

For that purpose, we have developed the Ocarina [55] AADL
tool-suite. It contains an AADL compiler that generates Ada, RT-
POSIX/C or ARINC653 compliant C code [18]. It relies on the
services of a real-time executive for all concurrency and distribu-
tion features (e.g. Linux, RTEMS or VxWorks). Thanks to careful
optimisations, the generated applications have low memory foot-
print and complexity.

3. MODELING ARINC653
ARCHITECTURES WITH THE AADL

This section presents the modeling patterns we designed for the
modeling of ARINC653 [4] architectures. The presentation of our
mapping follows the organization of section 2.1. Part of this work
is also included in the ARINC653 annex document of the AADL,
to be proposed for standardization by SAE.

3.1 Mapping partitions
An ARINC653 module (see section 2.1) is represented in AADL

by means of a processor component. It models the underlying
ARINC653 module that provides partitioning functionalities. Thus,
it contains partitions runtime as sub-components and defines parti-
tions scheduling policy as component properties.

ARINC653 partitions modeling is achieved with two AADL com-
ponents: virtual processor and process components. A virtual
processor component models the partition runtime (scheduling
policy for partition tasks, partition resources, . . . ) whereas a process
component models the partition address space.

The process component contains the partition content (thread,
data and so on). The virtual processor component is con-
tained in a processor component to model its association with
its corresponding ARINC653 module.

The AADL property Actual Processor Binding associates the
virtual processor and the process. We also describe memory
segments allocation by associating a process component with a
memory be defining the Actual Memory Binding property. This
explicits the location of the partition (its memory address, avail-
able memory size, . . . ).

3.2 Mapping ARINC653 processes
AADL threads are used to model ARINC653 processes. Both

represent the same concept: an instruction flow constrained by
some requirements (period, deadline, execution time and so on).
These requirements are specified on a AADL thread component



by means of the standard AADL properties. AADL threads are
contained in AADL process components.
Thread ports describe use of intra or inter partition communi-

cations. When two connected threads belong to the same process,
we assume this models an intra-partition service. When the con-
nected threads belong to different processes, we consider this is an
inter-partition communication channel.

3.3 Mapping intra-partition communication
Intra-partition communication functions of the ARINC653 stan-

dard are also represented in AADL. The proposed mapping is based
on interaction mechanisms between AADL thread components.

Modeling of ARINC653 buffers is achieved with AADL event
data ports connecting AADL thread components.

ARINC653 blackboards are mapped using AADL data ports
connected between several AADL thread components. AADL
data port do not use queuing mechanisms; thus, their semantics
is equivalent to the concept of ARINC653 blackboards.

ARINC653 events service is mapped using AADL event ports
connected between several AADL thread components. Event
ports transport and queue signals without any data. It also can
be shared across several threads by connecting them. Thus, this
concept is the same as the ARINC653 events.

The ARINC653 semaphore mechanism is mapped using a shared
AADL data component between several AADL threads.

3.4 Mapping inter-partition communication
The queuing port service of the ARINC653 standard is mapped

using AADL event data ports connected across AADL process
components. event data ports queue incoming data with re-
spect to a given queuing policy. It corresponds to the concept of
ARINC653 queuing ports.

The sampling port service of ARINC653 is mapped using AADL
data ports connected across AADL process components. AADL
data ports do not queue data and thus, are semantically similar
to ARINC653 sampling ports. AADL properties can be specified
on port declarations to refine their specifications (queuing policy,
refresh period, . . . ).

3.5 Health monitoring mapping
(AADL properties)

The Health Monitoring service detects faults and executes a re-
covering procedure when they are raised. It acts at three different
levels: module, partition and process.

We map this service by describing the potential faults with their
recovering strategies at each level. To describe these, we propose
AADL properties (ARINC653::HM Errors and
ARINC653::HM Actions). These properties are attached to each
level of the ARINC653 architecture: module/kernel (AADL processor
component), partition (AADL virtual processor component)
and process (AADL thread component).

3.6 Example
An example of an ARINC653 system represented with AADL

is shown in figure 5. This model defines a producer/consumer ar-
chitecture (as in figure 4) compliant with ARINC653 requirements.
To do so, it uses proposed modeling patterns.

In this example, we define one ARINC653 module (arincmodule
with two partitions. Partitions are described with processes (par-
tition address space, prs sender and prs receiver) and virtual
processor components (partitions runtime, part1 rt and part2 rt).

We also model a memory hierarchy to model available mem-
ory segments (memory.main). Partition address spaces (AADL

thr_sender thr_receiver

prs_sender prs_receiver

arincmodule
memory .main

arinc _producer_consumer.example

part1_rt part2_rt
segment1 segment2

Figure 5: ARINC653 producer/consumer

process components) are associated with these memory segments
(AADL memory components). Partition runtime (AADL virtual
processor components) are also associated with partition address
spaces (AADL process components). These associations (called
bindings) are represented with dashed arrows (graphical version)
or properties (textual version).

Each partition contains one task (AADL thread components) and
we introduce an inter-partition communication channel between
the partitions. The AADL ports that connect partitions are data
ports. These ports correspond to ARINC653 sampling ports.

4. VERIFICATION OF AADL ARINC653 AR-
CHITECTURES

The previous section presented some modeling guidelines to de-
scribe ARINC653 architectures with AADL. We now discuss how
such models can lead to automatic performance analysis. We focus
on ARINC653 task timing constraints and resource dimensioning
verifications. Such verifications can be performed thanks to vari-
ous techniques like formal methods, queuing systems theory or real
time scheduling theory. Here, we focus on real time scheduling the-
ory.

Foundations for real-time scheduling theory came out in 1970
[36] and led to extensive researches. Real-time scheduling theory
provides two verification methods:

1. Analytical methods also called feasibility tests

2. And algorithms in order to perform verifications with schedul-
ing simulations.

Several tools implement real time scheduling: Rapid-RMA [51],
Timewiz [50], MAST [27] or Cheddar [46].

Cheddar is a GPL open-source toolset composed of a graphical
editor and a library of processing modules. The toolset is writ-
ten in Ada95. The designer can express his real-time architecture
thanks to the Cheddar editor. However, it is expected that designers
perform the modeling activity with separate systems or software
engineering tools (e.g. Stood [19], TOPCASED [21], IBM Ratio-
nal Software Architect [37], ...). The Cheddar library implements
most of current feasibility tests and classical real-time scheduling
algorithms. This library also offers a domain specific language to-
gether with an interpreter and a compiler. This specific language
is used for the design and the analysis of schedulers that are not
implemented into the library.

In the sequel, we discuss how AADL ARINC653 models can be
analyzed with the Cheddar toolset, either by feasibility tests or by
scheduling simulations.



4.1 Verification by feasibility tests : the use of
design patterns

Feasibility tests usually assume very simple architecture models
that ease analysis.

The Liu and Layland real-time task model [36] is one of these
simplified architecture models. Liu and Layland proposed to model
each function of an architecture as a periodic task.

A periodic task periodically performs a given treatment and is
usually defined by three parameters:

• Task period (Pi). The task period is a fixed delay between two
release times of the task i. Each time the task i is released, it
has to do a job.

• Task capacity (Ci). Ci is the bound of execution time of a job.
For each release, the task will request Ci units of time of the
processor to run the corresponding job.

• Task deadline (Di). The task deadline is the timing constraint
that the task must meet. At each release time t, the corre-
sponding job has to be ended before time t +Di.

4.1.1 Example of a feasibility test
From the simple periodic task model, many feasibility tests were

proposed. As an example, Joseph and Pandia [25] have proposed
a way to compute the worst case response time of a periodic task
with a pre-emptive fixed priority scheduler as defined in equation 1.

ri = Ci + ∑
∀ j∈hp(i)

⌈
ri

Pj

⌉
·C j (1)

where ri is the worst case response time of the task i and hp(i) is
the set of tasks which have a higher priority level than i.

To check task timing constraint, this worst case response time
must be compared to the task deadline.

4.1.2 Increasing feasibility test usability with design-
patterns

Each feasibility test must be applied on architectures which are
compliant with numerous assumptions. For example, with equation
1, we assume that all tasks are released on the same time (called
critical instant), that the scheduler is pre-emptive, that tasks have
no precedence relationships and that ∀i : Di = Pi.

Furthermore, most of the time, this feasibility tests must be ex-
tended in order to take into account specific architecture behav-
ior: task waiting time on data components, jitter on task release
time, task precedence relationships, ...

It leads that numerous feasibility tests have been elaborated dur-
ing the last 30 years. Since each feasibility test requires that the tar-
get system fulfills a set of specific assumptions, it may be difficult
for a designer to choose the relevant analytical method. Unfortu-
nately, there is currently a too limited support provided by design
languages and software engineering tools to help the designer au-
tomatically applying real-time scheduling theory.

In [19], we have proposed an approach to ease the use of real
time scheduling theory. This approach consists in coupling Ched-
dar with a modeling tool called Stood.

Coupling of modeling and analysis tools requires that both ends
strictly comply with the same semantic definition of the exchanged
model. Such a guaranty can be brought by use of AADL standard
all along the tool-chain. Stood was chosen because it provides an
extended support for AADL in addition to its compliance with the
HOOD methodology [13]. Stood allows the designer to manage a

complete software project by building libraries of reusable compo-
nents, reversing legacy code and specifying the real-time applica-
tion as well as its execution platform. Most of the modeling ac-
tivities can be performed graphically and the corresponding AADL
code is automatically generated by the tool.

To ease the interoperability between Stood and Cheddar, we have
proposed a set of AADL design-patterns. In this context, a design-
pattern is an architectural solution to a commonly concurrency oc-
curring problem. For each pattern, we have proposed a set of fea-
sibility tests that Cheddar is able to automatically compute. If a
designer models his architecture with one of these design-patterns,
he enforces compliance of his architecture model with feasibility
test assumptions.

Four AADL design-patterns models usual real-time synchroni-
zation/threads-communication paradigms were proposed.

4.1.2.1 Synchronous data-flows design pattern.
With this design pattern, thread synchronization and communi-

cation is achieved with AADL data components.
Data component access is made by a clock synchronization of

the threads as Meta-H [52] proposed it.
In this synchronization schema, the thread dispatch is not af-

fected by the inter-thread communications that are expressed by
pure data flows. Each thread reads its input data ports at dispatch
time and writes its output data ports at completion time. Then, this
design pattern does not require the use of a protocol on data com-
ponents and actually, we do not take data components into account
for schedulability analysis.

In this simple case, the execution platform consists in one pro-
cessor running a scheduler such as Rate Monotonic [36].

4.1.2.2 Ravenscar design-pattern.
The main drawback of the previous design pattern is its lack of

flexibility at run time. Each thread will always execute, read and
write data at pre-defined times, even if useless. In order to introduce
more flexibility, asynchronous inter-thread communications can be
proposed.

An example of such a runtime environment is given by the Raven-
scar profile. Ravenscar is a part of the Ada 2005 standard [48]. It
is a set of Ada program restrictions usually enforced at compila-
tion time, which guarantee that the software architecture is real-
time scheduling theory compliant. Ravenscar is an Ada subset with
which real-time applications are composed of a set of tasks and
shared data.

Ravenscar assumes that tasks are scheduled with a fixed priority
scheduler and that data components are accessed with ICPP (Inher-
itance Ceiling Priority Protocol)[48, 44].

In this second design pattern data component access may occur
at any time.

4.1.2.3 Blackboard design pattern.
Ravenscar allows a thread to allocate/release several AADL data

components. Real-time scheduling theory usually models such a
shared resource as a semaphore to represent a critical section for
example.

In classical operating systems, many synchronization design pat-
terns exist such as critical sections, barriers, readers-writers, private
semaphores and various producers-consumers synchronization [49].

The blackboard design pattern implements a readers-writers syn-
chronization protocol. At a given time, only one writer can get the
access to the blackboard in order to update the data component,
as opposed to the readers which are allowed to read the data com-
ponent simultaneously. The usual implementation of this protocol



implies that readers and writers do not perform the same semaphore
access, then, it requires extra analysis.

4.1.2.4 Queued buffer design pattern.
In the blackboard design pattern, at any time, only the last written

message is made available to the threads.
Some real-time execution platforms provide communication fea-

tures which allow all written messages to be stored in a buffer.
AADL also proposes such a feature with event data ports. The
Queued buffer design pattern models such a communication.

For this design pattern, Cheddar provides some means to perform
buffer dimensioning verifications.

4.1.3 Verification of an ARINC653 AADL model with
feasibility tests

For a given ARINC653 architecture model, if we expect to au-
tomatically apply feasibility tests, we must find the design pattern
that is compliant with ARINC653 features of the model.

This set of design patterns may naturally model some ARINC653
features:

• The scheduling of ARINC653 tasks inside a partition is com-
pliant to the Ravenscar design pattern assumptions.

• ARINC task communications with queuing ports may be mod-
eled with the Queued Buffer design pattern.

• The blackboard design pattern has numerous similarities with
ARINC653 data and sampling ports.

4.2 Verification with exhaustive simulations
The hierarchical scheduling of ARINC653 (see figure 3) is not

compliant with the task scheduling assumptions of the four design
patterns described above.

Today, very few feasibility tests exist in the case of hierarchical
scheduling. Thus, design patterns of section 4.1 can only be applied
on ARINC653 architectures with no more than one partition on
each processor.

Since building new feasibility tests is also a difficult and expen-
sive work, when several partitions are deployed on the same proces-
sor, one may at least expect to verify performances with exhaustive
scheduling simulations.

In contrary to feasibility tests, scheduling simulations can not
lead to a schedulability proof. However, in the case of an AR-
INC653 architecture, we can expect deterministic schedulers and
periodic tasks. Thus, scheduling simulations may be considered
as schedulability proof if the system designer is able to compute
the scheduling during the hyper-period [35]. We call an exhaustive
scheduling simulation any scheduling simulation that is run during
this hyper-period.

To perform exhaustive scheduling simulations on these architec-
tures, one has to model its specific schedulers and task models.

Different languages and models were proposed for such a pur-
pose. For example, CPN tools [54] provides simulation features
based on Petri Net. Unfortunately, the use of these general purpose
simulation tools usually implies that the designer models real-time
scheduling low level abstractions such as task preemption. A sec-
ond way is to develop ad-hoc simulation programs, but this solution
implies a very low level of reusability.

The Cheddar library proposes a third way by the use of a domain
specific language and a set of tools (compiler, interpreter, code gen-
erator). This domain specific language allows the designer to build
models of his schedulers and task models and to automatically gen-
erate a simulation program.

In the sequel, we first give few details on the Cheddar domain
specific language and then, we explain how it may be used to per-
form exhaustive simulations in the context of ARINC653 hierar-
chical scheduling.

4.2.1 A language for modeling of hierarchical real-
time schedulers

Real-time schedulers are usually composed of two different func-
tions:

1. Arithmetic and logical statements to select a task among a
set of ready tasks or to compute task priorities.

2. Temporal constraints and synchronization between entities
(e.g. tasks and schedulers). These synchronizations describe
how entities must work all together in order to share proces-
sors.

In the Cheddar toolset, a scheduler is modeled with a set of Ched-
dar programs written with a domain specific language called the
”Cheddar language”. The Cheddar language is composed of an
Ada subset for the modeling of arithmetic and logical statements
and a timed automaton language for the synchronizations.

Arithmetic and logical statements operate on simulation data.
Simulation data are associated to the entities composing the ar-
chitecture to analyze (e.g. task release time, scheduler quantum,
shared resource protocol). A Cheddar program is organized in sub-
programs called sections.

The language defines usual operators and statements. Schedulers
can be modeled with loops, conditional tests or assignments. This
domain specific language also provides statements and operators
that are specific to real-time scheduling theory. For example, the
uni f orm/exponential statements customize the way random values
are generated during simulations ; the lcm operator computes least
common multiplier of simulation data ; the max to index operator
looks for the ready task which has the highest priority level, ...

The language is typed and provides usual types as integer, boolean
or string. Some types related to real-time scheduling theory are also
defined.

A Cheddar program may define timed automata similar to those
proposed by UPPAAL [7, 10]. UPPAAL is a toolbox for the mod-
eling and the verification of real-time systems. Timed automata
are frequently used to express timing and synchronization require-
ments of real-time systems. There are some experiments to model
and verify real-time schedulers with timed automata [6, 47, 31].
Numerous tools exist (editors, simulators and model-checkers such
as UPPAAL or Esterel Studio [12]) and some standards are also
based on such a formal model (e.g. UML Statecharts [20]).

A network of timed automata models timing and synchronization
between schedulers and tasks. The Ada like language described
above is enough to model schedulers which have fixed synchro-
nization relationships between tasks and schedulers. By the past,
we have shown that this language allows the modeling of simple
schedulers like Earliest Deadline First, Rate Monotonic or Maxi-
mum Urgency First. However, hierarchical schedulers as the one
proposed by ARINC653 require the modeling of complex synchro-
nizations.

In the context of the Cheddar language, every automaton may
fire a transition separately or synchronize with another automaton.
Transitions may be guarded with time constraints. Delays may ex-
press time consumption at transition firing. Finally, at transition
firing, automata may run Ada like subprograms in order to com-
pute task priorities or to choose the next task to run.
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Figure 6: AADL V2 tool chain for Cheddar

4.2.2 Performing scheduling simulations
Figure 6 depicts the tools chain we plan to set up in order to

process AADLv2 ARINC653 specifications with Cheddar. This
model driven engineering process is implemented with the help of
Platypus. Platypus [41] is a software engineering tool that we use
to specify and implement models, meta-models and code genera-
tors handled by the Cheddar toolset. Platypus is using the STEP
technology and especially the ISO 10303 data modelling language
EXPRESS [29, 30]: the Cheddar data model, the Cheddar language
meta model and any related code generators are all modelled using
the EXPRESS language [46].

The scheduling analysis of an AADL ARINC653 model is a
three steps process.

First step. The first step is the transformation of an AADL spec-
ification to an AAXL file using Ocarina or OSATE.

Second step. The second step is the processing of this AAXL
file with a tool component called AAXL2CheddarXML. The out-
come of this tool is a set of two XML files complying with two
different XML formats expected by Cheddar. The first XML file is
a Cheddar program modelling the actual hierarchical scheduling of
the AADL ARINC653 model to be analyzed. The second outgoing
XML file is a set of thread, process and processor components, ex-
pressed according to the Cheddar data model and in a syntax that
Cheddar scheduling simulator engine is able to handle.

From an inside point of view, AAXL2CheddarXML is composed
of an AAXL parser, a Cheddar XML printer, and a translator. The
parser produces an abstract syntax tree. The translator processes
this structure to create instances of the Cheddar data meta model.
The printer produces the Cheddar XML files from this set of in-
stances. The three sub-components of AAXL2CheddarXML are
supposed to be generated from the underlying meta model with
Platypus.

Third step. In this last step, the scheduling engine computes sim-
ulations with XML Cheddar files produced by AAXL2CheddarXML.

Scheduling simulation consists in predicting for each unit of time,
the task to which the processor should be allocated. Checking if
tasks meet their deadlines can be performed by analysis of the com-
puted scheduling.

When an ARINC653 partition only contains periodic tasks and
a deterministic schedulers, scheduling simulations lead to a proof

whether tasks meet their deadline. For such a proof, the schedul-
ing engine will perform scheduling simulation during the partition
hyper-period that can be computed by [35, 16]:

[0,LCM(∀i : Pi)] (2)

where Pi is the period of the task i and LCM is the least com-
mon multiplier of all task periods of the ARINC653 partition. With
equation 2, we assume that all periodic tasks of the partition have a
same first release time.

5. USING VERIFIED SPECIFICATIONS FOR
ARINC653 SYSTEMS IMPLEMENTATION

Previous sections detail the modeling and the verification of AR-
INC653 and safety-critical systems with AADL. In this section, we
present the automatic implementation of ARINC653 systems us-
ing the same modeling artifacts. The traditional implementation
process from AADL (designed in our previous work) is shown in
figure 7. It is based on code generation functionalities of Oca-
rina (our AADL toolsuite written in Ada), a static AADL runtime
(PoliORB-HI [17]) that provides access to the operating system and
application-level code (provided by the user).

AADL models

Ocarina code generation

Generated code
(C/Ada)

Compilation

AADL runtime User code
(Application code)

Binary

Figure 7: Ocarina development process to implement systems
from AADL specifications

Ocarina automatically generates code from AADL models. This
code is then compiled with the AADL runtime (left branch on fig-
ure 7) and user code (C or Ada functions, depicted by the right



branch on figure 7) to create executable binaries. The AADL run-
time provides execution services specific to AADL generated code
and relies on operating system services. Some services of this
AADL execution platform are manually written, some other parts
are automatically generated as well as glue code used to plug ap-
plication components to the AADL runtime.

We improved this code generation process to be able to gener-
ate hierarchical architectures such as ARINC653. Thus, this new
code generator creates code and configures each level (partition and
kernel/module). We also designed a kernel and a runtime for the
execution of each system layer (module/kernel and partitions).

The improved code generation process is detailed in figure 8.
Our AADL-to-ARINC653 code generator (Ocarina) outputs kernel
and partitions code compiled against an AADL/ARINC653 com-
pliant operating system which provides functionnalities to the gen-
erated code. Configuration and resources of kernel and partitions
are deduced from the analysis of architecture needs. Using the re-
quirements of each layer, we generate tiny code and avoid potential
overhead in resource management.

In the following, we discuss the ARINC653-toAADL code gen-
eration patterns we add to Ocarina, highlighting the differences
with our previous work [17, 28].
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Figure 8: Detailed implementation process of ARINC653 sys-
tems from AADL models

5.1 From generic to ARINC653 code
Our past work with Ocarina were focused on code generation

patterns for C [17] and Ada [28] which are optimized to reduce the
overhead induced by the distribution general purpose middleware.
Only the relevant services of the distribution middleware are inte-
grated in the final executable. This generated code also enforces
strong requirements, such as the Ravenscar profile [5].

Generated code usually relied on traditional operating systems
which introduce a large overhead due to the integration of unused
kernel services. Such a dead code may prevent the certification of
safety-critical systems. In addition, the generated code used wide-
known standards (as POSIX) that are not relevant in our context.

To address these issues, we adapt code generation patterns to
configure the underlying kernel according to its requirements and
properties. We configure each partition by including only needed
services and by avoiding potential overheads. Moreover, we gen-
erate code for each layer of the hierarchical architecture in order to
fulfill its requirements (such as time/space isolation).

We now describe the mapping strategies to transform AADL
components into ARINC653 compliant code and detail the code
generated in module/kernel and partitions layers.

5.1.1 Generating code for ARINC653 module
(AADL processor)

When the model defines an AADL processor (which corre-
sponds to an ARINC653 module), its contained virtual proces-
sor components (which correspond to ARINC653 partitions) are
analyzed: the code generator deduces the required services and the
ports routing policies to configure the module.

Once components are analyzed, the code generator produces a
dedicated code to configure kernel/module services: partitions schedul-
ing, memory isolation and inter-partition ports routing. This part is
especially crucial since it configures the most critical part of the
system (the partitioning policy).

5.1.2 Generating partition code (AADL virtual pro-
cessor and process)

The code generator analyses the AADL process associated to
each AADL virtual processor component (the runtime of an
ARINC653 partition). During the analysis of this component, we
configure the services of the partition, depending on its subcompo-
nents and properties.

For each AADL process (which corresponds to the address
space of the partition), incoming and outgoing ports (event data
and data ports) are analyzed. Depending of their declaration, we
enable or disable inter-partition communication services (ARINC653
queuing or sampling port). On the kernel configuration side, con-
nections of these ports are analyzed in order to declare them with
all their requirements (size, direction, etc.).

The code generator also configures each partition address space
according to the associated memory component. Then, the con-
tained AADL threads located in this AADL process (ARINC653
partition) are analyzed.

5.1.3 Generating processes code (AADL threads)
For each AADL thread component (ARINC653 process), we

inspect incoming and outgoing ports. If these ports are connected
to the contained process ports, the thread uses previously created
inter-partition communication ports (ARINC653 queuing or sam-
pling ports). If these AADL ports are connected to other AADL
thread components located in the same process, they are mapped
to ARINC653 intra-partition communication ports.

In that case, depending on its category (event, data or event
data), a port is mapped to different intra-partition communica-
tion mechanisms (respectively ARINC653 events, blackboards
or buffers). In addition, we set its requirements (size, direction,
queuing policy, . . . ) according to the AADL model.

We also add function calls to create the associated ARINC653
process inside the partition according to its scheduling require-
ments (period, execution time and so on). Finally, we add con-
figuration directives in the kernel/module to support the required
amount of tasks.

5.1.4 Generating functions (AADL subprograms)
The code generator transforms AADL subprograms calls in each

thread into a C call sequence.
For each subprogram, it generates a function/procedure. It en-

forces the AADL description (parameters, data types and so on) of
the call sequence. Then, this function calls other generated func-
tions or user-defined code (Ada or C function/procedure, poten-
tially generated from application-level models).



5.2 From generated code to binaries
Although several commercial ARINC653 operating systems ex-

ist [33], they do not really fit with generated code needs. On the one
hand, commercial operating systems have dedicated configuration
directives, specific to each ARINC653 operating system provider.
On the other hand, our code generator produces a fine grained con-
figuration of the runtime according to the user requirements. The
integration of the generated configuration and commercial operat-
ing system configuration is tedious due to the number of different
directives and their vendor-specific aspects.

Our AADL runtime (POK) is compliant with ARINC653 re-
quirements. It has two layers: a kernel layer that enforces time and
space partitioning across partitions and a partition runtime layer
that provides required functionalities and kernel-interfacing func-
tions for each partition. The following subsection details each layer.

5.2.1 Kernel/module Layer
The module layer manages partitions and handles services that

need privileged instructions. It contains only few services to remain
small and potentially amenable for validation/certification.

On the contrary, unprivileged services are contained in the parti-
tion layer. This design guideline reduces the module size (critical
part of the system) and puts a potential overhead in partitions (less
critical part).

Our kernel layer (ARINC653 module) provides the following
services:

• Partitioning support with isolation mechanisms

• Inter-partition communication ports (ARINC653 queuing and
sampling ports are supported)

• Hierarchical scheduling and time isolation enforcement across
partitions

The partitioning support consists in isolating partitions in dis-
tinct address spaces. It also manages partition threads and ensures
their isolation in their associated partition address space. The inter-
partition communication service handles ports. It also provides iso-
lation across ports: one port belongs to a partition and cannot be
used by another. Finally, the scheduling service ensures time isola-
tion enforcement across partitions. It executes partitions according
to their allocated time slots and schedules partition threads accord-
ing to partitions scheduling policy.

5.2.2 Partition Runtime
The partition runtime layer contains more services than the mod-

ule. Provided services are listed below:

• Intra-partition communication ports

• Standard libraries (such as the standard C-library or the math
library)

• Memory allocator

• Device drivers

The intra-partition communication service is entirely handled in
the partition runtime in order to avoid some useless functionalities
in the kernel layer. It handles the four communication patterns of
ARINC653 (buffers, blackboards, events and semaphores).

The standard libraries provides widely-used libraries to ease porta-
bility (standard C functions, math library, . . . ).

The memory allocator service provides functions to allocate or
free memory (as in malloc() or free()). This service handles

memory located in the partition address space; thus, no memory
allocation is performed by the kernel layer.

Finally, device drivers are implemented in the partition runtime
so that partitions can have a direct access to the hardware. In some
cases, drivers require to perform privileged instructions. Then, we
provide interfacing functions with the module to perform privileged
instructions with respect to isolation requirements (the kernel re-
jects instructions that may break the partitioning policy). For in-
stance, if a partition is allowed to perform some privileged instruc-
tions, others will not be allowed to do them.

In both parts (kernel and partition runtime), the developer can
automatically include or remove some services using configuration
directives. This way, useless services are not included in order
to reduce the memory footprint (dead code avoidance) and ease
the certification/verification. For example, if no partition uses AR-
INC653 queuing ports, their associated functions are not included
in the kernel/module layer and their interfacing functions are not
included in the partition layer.

Our partition runtime was initially designed with the C language
to ease the design of low-level kernel functionalities. However, an
Ada version is currently being written. This new version will take
advantage of some specific features of the GNAT compiler (use of
profiles, restrictions, . . . ) and make partitions code more reliable.
Both versions (Ada and C) are compliant with the API defined in
the ARINC653 standard.

POK is released under the BSD license [3] and is available on
two architectures (x86 and PowerPC). It can be tested with emula-
tors such as QEMU [11]. Although the use of AADL have many
benefits, developers can also configure POK manually.

6. CASE STUDY
The following case study illustrates the use of our toolset for the

verification and implementation of ARINC653 architectures. In the
following, we verify and automatically implement the system from
the same AADL model, as detailed in figure 1 (section 1).

The case study is composed of:

1. An AADL model that describes architecture concerns. It is
used by both verification and implementation processes.

2. C application-specific code. It is only used for the implemen-
tation process (it is the code executed by partitions tasks).

The verification process is fully backed with Cheddar while the
implementation process is achieved with Ocarina (code generation
from AADL to ARINC653/C) and POK (AADL runtime for the
generated code). Files and associated materials are available for
download on our AADL portal [2].

In the following, we first present the case study, the associated
AADL model and its modeling patterns. Then, we detail the ver-
ification process on this model and discuss the automatic imple-
mentation. Finally, we compare the results of both execution and
simulation.

6.1 Case-study overview
Our case-study is composed of three partitions that run on the

same processor: Synchronous, Ravenscar and Queued Buffer. The
application part of the system is not described here since its perform
some computations on data and is not relevant in the context of
architecture analysis.

The Synchronous partition contains three tasks (ARINC653 pro-
cesses) scheduled with a non-preemptive scheduler. Two tasks (Thread
1 and Thread 2 on the model) share one data (shared data), which is
not protected by dedicated mecanisms (such as mutex or semaphore).



On the contrary, protection of the data is achieved by the non-
preemptive scheduler. It allocates a fixed amount of time for each
task that is sufficient to complete tasks job. The remaining job
(Thread 3) does not use the data, it just prints some informations.

The Ravenscar partition has the same architecture than the Syn-
chronous partition. However, it schedules its tasks with a preemp-
tive scheduler and use protection mecanisms (an ICPP mutex) for
accesses to the shared data.

The Synchronous partition is different from the previous. It is
composed of three tasks that communicate through a queued buffer
(ARINC653 Buffer). Two tasks (Sender 1 and Sender 2) send data
to a receiver task (Receiver).

6.2 The AADL model
The corresponding AADL model is depicted in figure 9. Due to

a lack of space, we didn’t include the textual representation (it is
available on our AADL portal [2]).

Each partition has its own runtime that schedules its threads and
its own memory segment to store code and data. As AADL graphi-
cal diagrams do not indicate a way to model component properties,
we detail the properties through several tables.

shared data

Sender 1

ReceiverThread 1 Thread 2

Synchronuous partition
Queued buffer

partition

Synchronuous
runtime

Ravenscar
runtime

Queued buffer
runtime

ARINC653 module

Memory segment

Main memory (RAM)

Memory segment Memory segment

Thread 3 protected
shared data

Thread 1 Thread 2

Ravenscar partition

Thread 3 Sender 2

Figure 9: Case study

Scheduling requirements of each partition are reported in table
1. We can notice that the only difference between partitions Raven-
scar and Synchronous is the preemptive scheduling policy, which
impacts the shared data access policy.

Partition Scheduling
policy

Preemptive
scheduler

Execution
time

Synchronous FIFO no 200ms
Ravenscar FIFO yes 200ms

Queued-Buffer FIFO yes 100ms

Table 1: Partitions Requirements

In addition, we indicate the requirements of partitions tasks in
tables 2 and 3. Tasks of Synchronuous and Ravenscar partitions
have the same scheduling requirements. On the contrary, the shared
data use the ICPP concurrency control protocol in the Ravenscar
partition whereas the Synchronous partition does not use one.

6.3 Verification
Figure 10 shows a screenshot of the Cheddar tool. Cheddar dis-

plays analysis results in two parts. In the top part of the Cheddar’s

Task Priority Execution
time

Period

Thread 1 4 3 ms 50 ms
Thread 2 3 2 ms 50 ms
Thread 3 1 6 ms 50 ms

Table 2: Requirements of Ravenscar and Synchronous parti-
tions

Task Priority Period
Sender 1 2 20 ms
Sender 2 2 20 ms
Receiver 1 10 ms

Table 3: Requirements of the Queued Buffer partition

window, the scheduling of each AADL thread is drawn. In the bot-
tom part of the window, performance criteria such as thread worst
case response times are presented. Depending on the ADDL model
to analyze, these criteria will be computed either by feasibility tests
or by scheduling simulation analysis.

In the context of our case-study, the scheduling analysis is per-
formed by simulation since no feasibility test exists for this kind
of architecture. According to its partition scheduling, the hyper-
period for this ARIN653/AADL model is 500 ms. Since the hyper-
period is short enough, we can perform an exhaustive scheduling
simulation : we can check that all thread deadlines will be met
in the hyper-period, which means that no thread deadline will be
missed at execution time.

6.4 Automatic implementation
As detailed in figure 8, ARINC653 compliant code is generated

with Ocarina and compiled/linked against the POK runtime. The
code generation step outputs code for kernel (ARINC653 module)
and partition layers.

On kernel side, the generated code describes partitions require-
ments in terms of scheduling (the different time frames for each
partitions) and memory. In particular, this code:

1. Allocates a memory segment for each partition. The size of
the segments is specified according to the AADL model with
the memory components (Memory segment on figure 9).

2. Schedules each partition according to their time slots (200ms
for the Synchronous and Ravenscar partitions, 100ms for the
Queued-Buffer partition).

On partitions side, the generated code initializes resources, han-
dles communication (send/receive data from other tasks) calls ap-
plication code and locks shared data when needed. In this case-
study, the generated code provides the following functionnalities:

1. Tasks handling (all partitions)

2. Locking resources management (Ravenscar partition)

3. Communication management (Queued-Buffer partition)

Once the code is generated, it is automatically compiled against
POK to produce binaries. POK provides an efficient toolchain to
automatically generates code, compiles it with appropriate compil-
ers and starts simulation (with emulator such as QEMU [11]). Code
is compiled with a traditional compiler (Gnu C Compiler - GCC)
and produced binaries are statically linked.



Figure 10: Scheduling simulation of the case study

6.4.1 Execution traces
We modify the scheduler and instrument the code to get relevant

informations about partitions scheduling. Table 4 reports our exe-
cution traces and indicates tasks release time. We report only events
that occur during the first 500ms of the execution. Due to a lack of
place, we cannot add more information. However, it is sufficient
to compare execution traces with the simulation. In the following,
we discuss these results while section 6.5 compare simulation and
execution results in terms of scheduling.

Time isolation across partitions
At first, the time isolation across partition is well enforced: the

synchronous and ravenscar partitions are executed during 200ms
while the queued buffer partition is executed for 100ms.

Partitions execution time is allocated according to the specifica-
tions. This timing enforcement show that:

1. The time isolation achieved by the scheduler of the POK ker-
nel is correct.

2. The generated configuration file is correct. In other words,
the translation of high level representation (AADL models)
into C configuration code preserves specified requirements.

Then, we need to check that scheduling inside the partition is
correct regarding the specification.

Initialization matters
In each partition, there is always a latency time between the ex-

pected release time and what is really done by the system. For ex-
ample, in every partition, the first task starts one millisecond after
the release of the partition.

This ”latency time” is due to an initialization task executed when
a partition starts. This initialization task creates other tasks, shared
resources and communication channels. It consumes few time, but,
in every case, it consumes at least 1 ms. However, once it created
partitions resources, this task is no longer scheduled.

6.4.2 Memory footprint
One particular aspect in safety-critical systems is their constraints

in terms of memory. For these reasons, generated code must be as
small as possible.

People usually care about the overhead introduced by the gen-
erated code [53, 34]. Former tools and approaches introduced an
overhead in the generated code that makes difficult the use of such
technology in the safety-critical domain.

Partition Task Release time

Synchronous
Thread 1 1, 50, 100,
Thread 2 1, 51, 100, 150
Thread 3 2, 52,

Ravenscar
Thread 1 201 ,251, 301, 351
Thread 2 201, 252, 301, 351
Thread 3 202, 253, 302, 352

Queued Buffer
Sender 1 401, 421, 441, 461, 481
Sender 2 402, 421, 441, 461, 481
Receiver 411, 422, 431, 442,

451, 462, 471, 482, 491

Table 4: Release time of each task

We present the size of the generated application to show that
a code generation process could fit with the contraints of safety-
critical applications.

Table 5 presents the memory size of the generated kernel and
partitions. Sizes of the Synchronous and Ravenscar partitions are
similar due to their similar content. The difference between these
partitions (use of locking functions) does not have a significant
impact on memory requirements. The Queued-Buffer partition is
more important because it uses more functionnalities than the other
partitions. For this reason, additional code is added in this partition.

The total size of the system (kernel + partitions) is under 50 kB.
It includes partitions functionnalities and a full OS support. It can
be considered as small: typical RTOS (such as RTEMS [40]) have
a memory footprint higher than 100 kB.

This experiment also shows that code generation approaches can
create code that meets safety-critical systems requirements. A deeper
analysis of the generated code would show the compliance of the
generated code regarding constraints of safety-critical system (such
as code coverage). However, this topic is beyond the scope of this
article.

Component Size
Kernel 14 kB

Synchronous Partition 11 kB
Ravenscar Partition 11 kB

Queued-Buffer
Partition

13 kB

Table 5: Memory size of generated kernel and partitions

6.5 Simulation vs. Execution
Simulation and execution of this case study were discussed in

sections 6.3 and 6.4. If we compare them, we can notice some
differences in the release time of the tasks.

These differences are due to:

1. The execution time of the application code in the implemen-
tation. The simulation schedules tasks according to a con-
stant task execution time which models the task worst case
execution time (WCET). In contrary, the implementation code
runs a real C sub-program with an execution time that is
bounded by the simulation constant task execution time.

2. The ”latency time” introduced by the initialization tasks. This
issue was discussed in section 6.4.1.



However, regarding these concerns, simulation and execution
show correctness of partition isolation in terms of time since:

1. Scheduling of partitions is exactly the same between simu-
lation and execution.

2. Execution order of the tasks is the same between simulation
and execution.

It demonstrates that:

• Simulation and implementation of ARINC653 systems can
be driven from the same modeling artifact.

• Scheduling can be simulated from an architecture model and
derived implementation code can reflect simulation results.

• It also shows that isolation can be verified at model level and
enforced in the implementation of the system.

7. CONCLUSION
Design, verification and implementation of ARINC653 systems

are very complex tasks due to their criticality and their dedicated
services (time and space isolation).

The goal of this paper is to propose an appropriate MDE-based
development process to capture architectures requirements using
the AADL modeling language and its ARINC653 annex. The AADL
was selected as a backbone language for our development process
because its semantics is suitable for the modeling of safety-critical
architectures. Moreover, the use of a single representation of the
system all over the development process helps to relate require-
ments to implementation solutions.

The presented development approach exploits the user AADL
models to: (i) check scheduling and dimensioning aspects with re-
gards to runtime requirements using Cheddar and (ii) automatically
generate the system, using an AADL-to-ARINC653 code generator
(Ocarina) and a dedicated AADL/ARINC653 runtime (POK).

The main advantage of this development approach is the use of
verification mechanisms to automatically detect potential problems
before implementation efforts. Code generators also ensure that the
produced code is compliant with the specification. A last advantage
is to provide an ARINC653 compliant runtime to operate the pro-
duced system. These different points tend to reduce development
costs and to increase reliability of safety-critical systems.

We also show that a MDE approach can produce implementation
code that reflects the results of simulation/validation tools. Here,
we carried out experiments on a highly-critical aspect of the sys-
tem: its scheduling policy.
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