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Abstract In this work, we propose an innovative approach to investigate the admissibility
of permutations to multistage interconnection networks—a challenging problem of switch-
ing theory. The proposed approach is centered upon modeling of multistage interconnection
networks with colored Petri nets and use of Petri net analysis tools such as the unfolding
technique and the invariants method. To assess the feasibility of the proposed approach we
demonstrate that the complete unfoldings obtained in this work are polynomial in the prob-
lem size and employ an acyclic structure. The approach takes advantage of easy to use, yet
extremely efficient, software tools.

1 Introduction

The performance of multiprocessor systems today is limited by their communication or inter-
connection, not by their logic or memory. Designing fast interconnection networks therefore
becomes a critical issue to exploit the performance of multiprocessors. Data routing between
the local memories of processing elements in multiprocessor systems can be represented as a
variety of regular and irregular permutations of the network’s inputs into its outputs. Efficient
data routing in multiprocessors essentially depends on whether permutations demanded by
a particular application are admissible to the network topology.
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We say an N × N multistage interconnection network (MIN) generates a permutation
π : N → N if there exists a setting of the switches in the MIN such that the input i is con-
nected to the output π(i) for 0 � i < N . Determining whether a given permutation can be
generated by a MIN in a single pass is referred to as the permutation admissibility problem.
Deciding on permutation admissibility in an arbitrary MIN is a well-known difficult prob-
lem. For instance, it has been reported [20,21] that the permutation admissibility problem
for some MINs is equivalent to 2k-colorability in graphs, which is a NP-complete problem.

In this paper, we present a colored Petri net (CP-net) model of a MIN and show how
the permutation admissibility problem can be analyzed in terms of CP-nets. In this model,
a permutation is represented as a place marking. A permutation is admissible to the MIN if
the marking induced by this permutation is reachable from the initial marking in associated
CP-net. This constitutes the key idea behind of this work: by adopting CP-nets for MIN
modeling we reduce the permutation admissibility problem to the reachability in CP-nets.

To verify the reachability in a CP-net we first unfold the CP-net into equivalent place/tran-
sition net (P/T-net) and then implement the invariants method to related P/T-net. The proposed
approach takes advantage of powerful existing software tools, particularly, CPN-AMI [14], a
Petri net CASE (Computer Aided Software Engineering) environment for the verification
of concurrent systems, which is used to unfold CP-nets into equivalent optimized complete
unfoldings. The approach is easy to use and can be efficiently applied to MINs made of
crossbar switches.

The paper is organized as follows. Section 2 reviews key work, to date, in this field.
Section 3 gives background on frequently used permutations and interconnection networks,
provides basics about CP-nets, and succinctly overviews the optimized unfolding technique
and the invariants method. The main results are presented in Sects. 4, 5, and 6. Section 4
describes the CP-net model adopted in this paper. Section 5 presents the feasibility analysis
for the unfolding technique and the invariants method regarding the Petri nets obtained in
this work. Section 6 presents and analyzes the experimental results. Finally, Sect. 7 contains
conclusions and observations about future work.

2 Related work

Much research work has been done on permutation admissibility of MINs. The research in
this area is mainly focused on two aspects of permutation admissibility: determining the type
of permutations that are admissible to the given MIN and finding out a MIN topology that
would best match the given class of permutations.

In the first direction, the researchers have extensively studied the admissibility of per-
mutations to N × N full-access and unique-path MINs made of 2 × 2 switches. There are
only N N/2 out of N ! possible permutations that are admissible to any N × N full-access
and unique-path MIN. Determining the permutations that are indeed admissible to this type
MINs is an important problem in optimally supporting application needs.

A necessary condition that a permutation must satisfy for being admissible to an m stage
shuffle-exchange network (SEN) for log2 N < m � 2 log2 N − 1, was formulated in [5].
In [6] this result was used to determine the minimum number of stages that is necessary
for permutations to be admissible to an optical MIN. An O(Nn) algorithm that determines
whether a permutation is admissible to N × N multistage cube-type networks (MCTNs), that
are topologically equivalent to many full-access and unique-path MINs [24], was introduced
in [20]. In [21] this result was extended to k-extra stage MCTN with k = 1. In the same
paper it was shown that a permutation is admissible to a k-extra stage MCTN if and only
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if the conflict graph is 2k-colorable. NP-completeness of 2k-coloring problem in graphs,
for k > 1, does not permit the development of general methods to analyze the permutation
admissibility with polynomial dependence on the number of extra stages. Although there
exist efficient algorithms for checking the permutation admissibility for k = 0 and k = 1, no
such algorithm is known for k > 1 [6]. In other works [4,22,23] permutation admissibility of
binary hypercube, R-path omega and generalized SENs were investigated both at theoretical
and algorithmic levels.

On a different tangent, many researchers have studied the admissibility of frequently used
regular permutations which belong to BP (bit permute), BPC (bit permute complement),
LIN (linear combination), LC (linear combination complement) and other permutation clas-
ses [6,9,10,16,19–24]. A comprehensive survey of permutations frequently used in parallel
processing is given in [8].

The approach proposed in this paper differs from existing ones in three aspects. Firstly,
aforesaid works are mainly restricted to regular permutation classes such as BP, BPC, etc.
There are n! bit permute permutations, and we can generate 2n bit permute complement
permutations from each bit permute permutation, meaning that there are n!2n distinct bit per-
mute complement permutations [6,8,23]. It is known that there are 2n(n+1)/2 ∏n

i=1(2
i − 1)

permutations in LC class [18]. However, there still exist important permutations of more
peculiar structure that belong to neither of these permutation classes. Some examples of
regular permutations that do not belong to BPC are [8]:

∗ cyclic shift of amplitude k permutation defined as π(x) = ( j x + k) mod N where
1 � k � N and j is odd number;

∗ cyclic shift within segments permutation defined as π(x) = δ2(x+k) mod 2n− j where δ2

is the decimal number equivalent to the j most significant bits in the binary representation
of x , and 1 � k � N ;

∗ unscrambling j-ordered vectors permutation defined as π(x) = ( j x) mod 2k +(xn,

xn−1, . . . , xk+1)2k with 1 � k � N where j is odd numbers.

This paper explores the admissibility of an arbitrary permutation.
Secondly, there are a variety of MIN structures of practical interest that are not topo-

logically equivalent to MCTN. These MINs are not covered by traditional algorithms. Our
approach is applicable to any MIN made of crossbar switches though we use 8×8 and 16×16
SENs as examples to illustrate the proposed technique.

Finally, traditional algorithms are mostly based on linear algebraic and graph theoretic
methods such as the balanced matrices characterization or the window method. In this paper
we exploit CP-nets to decide on permutation admissibility.

3 Preliminaries

3.1 Permutations and interconnection networks

Let x, y ∈ X where X = {0, 1, . . . , N − 1}, N = 2n , x = xn xn−1 · · · x1 and y =
yn yn−1 · · · y1 in binary with yi , xi ∈ {0, 1} for 1 � i � n. A permutation π is a bijec-
tion π : X → X . Although expressed in a different form, the following definitions are
equivalent to the ones given in many papers.

The bit complement permutation is obtained using only operations defined as C(k) :
xn · · · xk · · · x1 → xn · · · xk · · · x1. The class of all bit complement permutations is denoted
by BC. The bit complement permutation involves only operations defined as P(r, t) :
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Fig. 1 An illustration of permutation admissibility: a 04532671 is admissible; b 01456271 is not admissible
to 8 × 8 3-stage SEN

xn · · · xr · · · xt · · · x1 → xn · · · xt · · · xr · · · x1. The class of all bit permute permutations is
denoted by BP. The bit permute complement permutation is a composition of operations of
the type PC(r, t) : xn · · · xr · · · xt · · · x1 → xn · · · xt · · · xr · · · x1. The class of all bit permute
complement permutations is denoted by BPC.

A permutation is a linear permutation, if there exists a nonsingular (or invertible) binary
matrix [λi j ] such that yi = ∑n

j=1 λi j x j , 1 � i � n where the addition and multiplication
operations are of those modulo 2 arithmetic. The class of all linear permutations is denoted by
LIN. The permutation is a linear complement permutation if and only if yi = ∑n

j=1 λi j x j ⊕1
for 1 � i � n, where ⊕ stands for modulo 2 bitwise addition operation. The class of all linear
complement permutations is denoted by LC. Finally, the perfect shuffle σ is a permutation
σ : X → X such that σ(x) = xn−1xn−2 · · · x1xn , that is, σ(x) is a left circular shift of the
bits in the binary representation of x .

Each (2×2)-switch is a two-input/two-output device that can be set to either through state
or cross state. A MIN is typically organized in stages of 2 × 2 switches and described by the
set of interconnection patterns employed between neighboring stages. MCTNs represent a
minimal cost network structure since they provide exactly one path between any input and
output pair. n stages of 2×2 switches with perfect shuffle pattern between neighboring stages
is an example of MCTN (see Fig. 1). A MIN is said to be rearrangeable, if it is capable of
performing all the permutations of MIN’s inputs into its outputs.

3.2 Colored Petri nets

P/T-nets are mathematical and graphical modeling tool that are evolved from finite state auto-
mata to describe and analyze the problems arising in scientific, engineering and industrial
domains. CP-nets are a class of flexible specification languages generalized from P/T-nets.
CP-nets are suitable for modeling and analysis of concurrent systems with dynamically
changing structured objects.

Below we recall basic concepts about CP-nets and refer readers to [11,12] for detailed
information on CP-net formalism.

3.2.1 Basic definitions

A P/T-net is a 5-tuple, PN = (P, T , A, W, M0) where P is the finite set of places, T is the
finite set of transitions, such that P ∩ T = ∅ and P ∪ T �= ∅, A ⊆ (P × T ) ∪ (T × P) is
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the finite set of arcs, W : A → N is the weight function, and M0 : P → N is the initial
marking.

A CP-net is a 9-tuple [11] CPN = (�, P, T , A, N , C, G, E, I), where � is the finite set
of non-empty color sets, P is the finite set of places, T is the finite set of transitions, A is
the finite set of arcs, N : A → P × T ∪ T × P is the node function, C : P → � is the color
function, G is the guard function, E is the arc expression function and I is the initialization
function.

A binding b of a transition t ∈ T replaces each variable occurring in the arc expressions on
the surrounding arcs of t with an element of an appropriate color set. The set of bindings for
t is denoted as B(t). A token element is a pair (p, c) where p ∈ P and c ∈ C(p). A marking
and a step Y are non-empty and finite multi-sets over the set of binding elements. A step Y is
enabled in a marking M , i.e., ready to occur, if ∀p ∈ P : ∑

(t,b)∈Y E(p, t) < b > ≤ M(p).
An enabled step Y may occur (or fire), changing the present marking M1 into another marking
M2.

A marking M2 is directly reachable from M1, denoted by M1[Y � M2, if there exists a
step Y changing M1 into M2. A finite occurrence sequence is a sequence of markings and
steps M1[Y1 � M2[Y2 � M3 . . . Mn[Yn � Mn+1 for n ∈ N. Markings M1 and Mn+1 are called
respectively start (or initial) and end marking, while the value n is the length of the occur-
rence sequence. A marking Mn+1 is reachable from M1, if there exists a finite occurrence
sequence changing marking M1 into marking Mn+1.

A finite occurrence sequence with matching start and end markings forms a directed cir-
cuit. A CP-net contains a directed circuit if and only if ∃M

′ ∈ M such that M
′ ∈ [M

′ � . A
CP-net having no directed circuits is called an acyclic CP-net.1

3.2.2 Unfolding technique

Unfolding technique is a method used to transform a high-level Petri net into P/T-net preserv-
ing the main properties of the original net. Both our understanding of the unfolding technique
and its practical use in this work are influenced by optimized unfolding of CP-nets, proposed
in [15]. To increase the readability of the paper below we succinctly describe main phases of
the optimized unfolding technique and refer readers to [15] for detailed explanation of these
phases.

1. Unfold each colored place p ∈ P into a set of places p
′ ∈ P ′

, one for each color of
tokens c ∈ C(p).

2. Unfold each colored transition t ∈ T into a set of transitions t
′ ∈ T ′

, one for each
binding b ∈ B(t).

3. Represent an unfolded net in a compact symbolic form by utilizing Data Decision Dia-
grams.

4. Optimize an unfolded net by removing all unnecessary components such as 0-bounded
places, transitions with false-valued guards, etc.

Below we illustrate construction of optimized complete unfolding introducing a simple
example of (2 × 2)-switch. A CP-net shown in Fig. 2a is a model of (2 × 2)-switch, which is
detailed in Sect. 4. Corresponding complete unfolding is represented in Fig. 2b. In this figure,
switch_1_1 and switch_0_0 are unnecessary components since these transitions are disabled in
the initial marking and will stay so permanently. By removing switch_1_1, switch_0_0 together
with the arcs surrounding these components we obtain optimized complete unfolding shown
Fig. 2c.

1 Acyclicity in P/T-nets can be defined similarly to that in CP-nets.
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(a) (b) (c)

Fig. 2 An illustration of the optimized unfolding technique: a CP-net model of (2 × 2)-switch; b related
complete unfolding; c unfolded net after optimization

3.2.3 Invariants method

For a P/T-net with n transitions and m places, the incidence matrix A = [ai j ] is an n × m
matrix with integer entries defined as ai j = a+

i j − a−
i j where a+

i j = w(i, j) is the weight of

the arc from transition i to its output place j and a−
i j = w( j, i) is the weight of the arc to

transition i from its input place j . Each invariant in a P/T-net can be expressed as the system
of linear algebraic equations called state equation

AT · x = Md − M0 (1)

where x is an n×1 column vector of nonnegative integers and is called the firing count vector,
M0 is the initial marking, and Md is the destination marking. The i th entry of x denotes the
number of times that transition i must fire to transform M0 to Md .

It has been shown [17] that the existence of a nonnegative integer solution x satisfying
the state equation (1) is a necessary but, in general, not sufficient condition for Md to be
reachable from M0. For acyclic P/T-nets the above condition is also sufficient.

As an immediate consequence of the above theorem, we can now use the state equation
(1) to verify the reachability in acyclic P/T-nets. Given acyclic P/T-net and two markings M0

and Md , we only need to write related state equation and find a nonnegative integer solution
x of the state equation. If such x exists then Md is reachable from M0. Otherwise, it is not.

4 Modeling with CP-nets

Below we formally define CP-net model of a MIN and detail its components, which will be
instrumental in successive sections.

Definition 1 [2] A CP-net of a (2 × 2)-switch is a 9-tuple
CPN-SW(2×2) = (�, P, T , A, N , C, G, E, I), such that

• � = {INPUT}, and INPUT is an integer color set with 0 and 1;
• P = {IN, OUT1, OUT2};
• T = {SW};
• A = {INtoSW, SWtoOUT1, SWtoOUT2};
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• N (a) = (SOURCE, DESTINATION), if a is in the form
SOURCEtoDESTINATION;

• C(p) = INPUT ∀p ∈ P;
• G(t) = true ∀t ∈ T ;

• E(a) =
⎧
⎨

⎩

1’N1+1’N2, if a = INtoSW

N1, if a = SWtoOUT1

N2, if a = SWtoOUT2;
• I(p) =

{
1’0+1’1, if p = IN

empty, otherwise.

The corresponding CP-net diagram is shown in Fig. 2a. In this figure, place IN represents
the inputs of the (2 × 2)-switch. Place OUT1 (OUT2) corresponds to switch output 0 (1).
The two steps Y1 = (SW,< N1 = 0, N2 = 1 >) and Y2 = (SW,< N1 = 1, N2 = 0 >)

are enabled in M0. An occurrence of Y1 changes M0 into M1 = 1′(OUT1, 0) + 1′(OUT2, 1),
indicating that the (2 × 2)-switch is set through. Similarly, an occurrence of Y2 changes M0

into M2 = 1′(OUT1, 1) + 1′(OUT2, 0), which sets the (2 × 2)-switch cross. Then the CP-net
becomes dead since both M1 and M2 are dead markings.

The CP-net model of (2 × 2)-switch fully describes the switch functionality. The through
(cross) state of the (2 × 2)-switch can be obtained by the occurrence of Y1 (Y2).

Definition 2 A CP-net of 2n × 2n m-stage interconnection network is given by a 9-tuple
CPN-MIN2n , m = (�, P, T , A, N , C, G, E, I), such that

• � = {INPUT}, where INPUT = {0, . . . , 2n − 1},
• P = PIN ∪ PAUX ∪ POUT ∪ PCDN, where

PIN = {INi}, i = 1, . . . , 2n−1, is the set of input places,
PAUX = {AUXi}, i = 1, . . . , (m − 1)2n−1, is the set of auxiliary places,
POUT = {OUTi}, i = 1, . . . , 2n, is the set of output places,
PCDN = {Ci}, i = 1 . . . , m2n−1, is the set of condition places;
PIN ∩ PAUX ∩ POUT ∩ PCDN = ∅,

• T = {SWi}, i = 1, . . . , m2n−1, is the set of transitions,
• A = AST ∪ APTN ∪ ACDN ∪ AOUT, where

AST ⊆ (T × PAUX) ∪ (PAUX × T ) is the set of straight arcs,
APTN ⊆ (PIN × T ) ∪ (PAUX × T ) is the set of pattern arcs,
ACDN ⊆ (PCDN × T ) ∪ (T × PCDN) is the set of condition arcs,
AOUT ⊆ (T × POUT) is the set of output arcs;

• N (a) = (SOURCE, DESTINATION), if a is in the form
SOURCEtoDESTINATION;

• C(p) = INPUT, ∀p ∈ PIN ∪ PAUX ∪ POUT;
• G(t) = true ∀t ∈ T ;
• E(a) = (Var(a))MS s. t. Type(Var(a)) = INPUT, ∀p ∈ PIN ∪ PAUX ∪ POUT;

• I(p) =
⎧
⎨

⎩

1′(2i − 2) + 1′(2i − 1), if p = INi for i = 1, . . . , 2n−1

1, if p = C1

empty, otherwise.

CPN-MIN2n , m is composed of transitions representing 2×2 switches, and places (exclud-
ing condition places) representing inputs and outputs of individual switches. Condition places
together with condition arcs are used to impose occurrence of the steps according to prede-
fined order given by

M0[Y1 � M1[Y2 � M2 · · · Mm2n−1−1[Ym2n−1 � Mm2n−1 (2)
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Fig. 3 A CP-net of 8 × 8 3-stage SENs

where Yi = (SWi, b) and b ∈ B(SWi) for 1 � i < m2n−1. Every transition appears exactly
once in this occurrence sequence. Pattern arcs correspond to interstage channels linking
neighboring stages in a MIN. Output arcs are used to display the final arrangement of tokens
in output places. We control the flow of tokens in CPN-MIN2n , m by evaluating arc expres-
sions belonging to related straight arcs.

As an example consider a CP-net diagram (Fig. 3) of 8 × 8 3-stage SEN (Fig. 1). In order
to ease the explanation, the net components are grouped in columns (Fig. 3) similar to the
way the switches are arranged in stages (Fig. 1). Thus, whole net is represented as a cascade
of columns alternating in type of the components being either place or transition. Transitions
occur column-wise from the leftmost to the rightmost and in columns from the topmost to
the bottommost. It can be easily seen that no token can visit a place more than once, and thus
occurrence-depth of every transition is 1. Direction of the arcs indicates the flow of tokens
through the net.

5 Characterization of complete unfoldings

The size of a complete unfolding, which we measure in terms of number of places and num-
ber of transitions, is directly proportional to storage capacity demanded to store the complete
unfolding. It is quite often the case that large complete unfolding causes memory overflow and
becomes a bottleneck of an application. In general, the unfolding techniques yield P/T-nets
that are larger than the original CP-nets. It is quite usual that an unfolded P/T-net exponential
in the size of the original CP-net is built even for a relatively simple problem [13]. The fol-
lowing proposition shows that for the CPN-MIN2n , m the algorithm described in Sect. 3.2.2
builds complete unfoldings that are polynomial in the MIN’s size N , and consequently more
sharper upper bounds can be obtained for optimized complete unfoldings.
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Let |TCP|, |PCP|, |TUnf | and |PUnf | be the number of the transitions and places in CPN-
MIN2n , k and corresponding unfolded net, respectively.

Proposition 1 The following holds:

|TCP| = Nk

2
; |TUnf | = N 3k

2
; |PCP| = N (k + 1) and |PUnf | = N 2(k + 2)

2
+ Nk

2
.

Proof In fact, we obtain an exact bound for |TCP| as a consequence of the following obser-
vations. It turns out that CPN-MIN2n , k is composed of Nk

2 net patterns with each pattern
representing CPN-SW(2×2), similar to the way 2n × 2n k-stage MIN is made of Nk

2 2 × 2
switches. Since CPN-SW(2×2) contains a single transition, we conclude that |TCP| = Nk

2 .
We can easily estimate |TUnf | by taking into account that the unfolding algorithm creates

one transition for each binding and that each binding can be regarded as a 2-color sample
(c1, c2) ∈ INPUT × INPUT where INPUT ∈ � and |INPUT| = N . If repetition is allowed and
order is important then there exist N 2 ways to compose 2-color samples from a color set with

N colors, meaning that |TUnf | = N 2|TCP| = N 3k
2 .

It is worth to mention that P = PIN ∪ PAUX ∪ POUT ∪ PCDN due to Definition 2, where PIN,
PAUX, POUT and PCDN are pairwise disjoint subsets of P . Then |P| = |PIN| + |PAUX| + |POUT| +
|PCDN| = 2n−1+2n−1(k−1)+2n +2n−1k = 2n(k+1) = N (k+1). Thus, |PCP| = N (k+1).

Algorithm described in Sect. 3.2.2 unfolds each p ∈ PIN ∪ PAUX ∪ POUT into |INPUT| =
N ordinary places. According to Definition 2, on the other hand, there are N (k+1)

2 places

of color type INPUT, meaning that PUnf contains N 2(k+1)
2 places unfolded from places in

PIN ∪ PAUX ∪ POUT. In addition, PCP has Nk
2 non-colored places. From which we conclude

that |PUnf | = N 2(k+2)
2 + Nk

2 . ��
Proposition 1 gives a feel about the complexity of complete unfoldings created by algo-

rithm discussed in Sect. 3.2.2 and allows us to measure the compactness of resulting P/T-nets
with respect to the original CP-nets. The important conclusion is that the complete unfoldings
obtained in this paper are polynomial in the size of original CP-nets (measured in terms of
|TUnf ||TCP| and |PUnf ||PCP| ratios) and also demonstrate polynomial dependence on the MIN’s size N .

Next propositions capture the intuition behind of acyclicity of P/T-nets unfolded from
CPN-MIN2n , m .

Proposition 2 CPN-MIN2n , m is an acyclic net.

Proof The proof is by contradiction. Suppose that CPN-MIN2n , m has a directed circuit. Then
there exists a token that visits a place more than once and there exists a transition that occurs
more than once in (2). This contradicts the fact that no token can visit a place more than once
in (2) and that the occurrence-depth of every transition is 1. ��
Proposition 3 Complete unfolding of CPN-MIN2n , m is an acyclic net.

Proof The proof is straightforward from acyclicity of CPN-MIN2n , m and construction of
unfolding discussed in Sect. 3.2.2. ��
Proposition 4 Optimized complete unfolding of CPN-MIN2n , m is an acyclic net.

Proof The proof is straightforward from the fact that removing components from acyclic net
results in another net that is also acyclic. ��

With this background, we are now allowed to use state equation, that has been discussed in
Sect. 3.2.3, to verify the reachability property in optimized complete unfoldings constructed
from CPN-MIN2n , m .
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6 Experimental results

To ascertain the effectiveness of our approach we have conducted numerous computer exper-
iments on PC/Linux/Windows XP platforms with 3 GHz of CPU frequency and 3GB RAM.
The optimized complete unfoldings in our experiments were constructed with the GreatSPN
tool [3], which is integrated into the CPN-AMI software package [14], and reachability anal-
ysis of optimized complete unfoldings by means of state equation (1) was performed with
high-level language and interactive environment Matlab. The unfolding results were verified
with the HELENA software tool [7].

We have tested the applicability of the proposed approach on two series of instances: 8×8
and 16 × 16 SENs. It has been shown [1] that 2 log2 N − 1 stages of 2 × 2 switches with
perfect shuffle pattern between neighboring stages is rearrangeable. This particularly means
that 8 × 8 5-stage and 16 × 16 7-stage SENs are capable of generating any input/output per-
mutation. So, we have checked the admissibility of permutations to 8 × 8 1 through 4-stage
and 16 × 16 1 through 6-stage SENs.

6.1 Construction of optimized complete unfoldings

Table 1 shows the results of our experiments for construction of optimized complete un-
foldings. In this table, |PCP|, |TCP|, |PUnf |, |TUnf |, |POpt| and |TOpt| respectively indicate
the number of places and transitions in related CP-nets, complete unfoldings and optimized

complete unfoldings. We use
|POpt |
|PCP| and

|TOpt |
|TCP| to measure the compactness of the optimized

complete unfoldings relative to the original CP-nets. Time needed to create unfolded P/T-nets
is expressed in seconds.

It must be noticed that our simulation results for TCP, PCP, TUnf and PUnf were consistent
with the analytical ones claimed in Proposition 1.

The comparison of experimental results within the series shows that number of places and
number of transitions in complete unfoldings increase linearly with increase of the number
of stages. More precisely, for 8 × 8 k-stage SEN (1 � k � 4) the associated P/T-net has
100 + 36 · (k − 1) places and 256 · k transitions. We have made similar observations for
complete unfoldings of 16 × 16 k-stage SENs, which contain 392 + 136 · (k − 1) places and
2048 · k transitions (1 � k � 6).

Table 1 Experimental results for optimized complete unfoldings

MIN CP-net Unfolded net Optimized net Rates

|PCP| |TCP| |PUnf | |TUnf | Time |POpt | |TOpt | |POpt |
|PCP |

|TOpt |
|TCP |

8 × 8 1-Stage SEN 16 4 100 256 1.6 28 8 1.75 2.00

8 × 8 2-Stage SEN 24 8 136 512 9 64 80 2.67 10.00

8 × 8 3-Stage SEN 32 12 172 768 25 132 304 4.13 25.30

8 × 8 4-Stage SEN 40 16 208 1024 55 136 592 3.40 37.00

16 × 16 1-Stage SEN 32 8 392 2048 17 56 16 1.75 2.00

16 × 16 2-Stage SEN 48 16 528 4096 126 128 160 2.67 10.00

16 × 16 3-Stage SEN 64 24 664 6144 110 264 608 4.13 25.30

16 × 16 4-Stage SEN 80 32 800 8192 363 528 1794 6.60 56.06

16 × 16 5-Stage SEN 96 40 936 10240 1190 536 2840 5.58 71.00

16 × 16 6-Stage SEN 112 48 1072 12288 1792 544 3916 4.87 81.58

123



Exploiting colored Petri nets to decide on permutation admissibility

Table 2 Permutations tested for admissibility

8 × 8 permutations 16 × 16 permutations

π1 =
(

0 1 2 3 4 5 6 7
3 0 5 6 2 1 4 7

)

π5 =
(

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 2 6 4 9 11 15 12 1 3 5 7 10 8 13 14

)

π2 =
(

0 1 2 3 4 5 6 7
0 1 3 2 5 4 6 7

)

π6 =
(

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
14 3 9 10 11 15 1 2 13 0 7 8 5 6 12 4

)

π3 =
(

0 1 2 3 4 5 6 7
7 0 3 5 4 2 1 6

)

π7 =
(

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 2 4 6 8 10 12 14 1 3 5 7 9 11 13 15

)

π4 =
(

0 1 2 3 4 5 6 7
0 1 6 3 7 5 2 4

)

π8 =
(

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

)

Increase of the MIN size, however, has lead to more rapid growth of number of compo-
nents in related P/T-nets, e.g., for 16 × 16 k-stage SEN (1 � k � 4) corresponding P/T-net
contains exactly 8 times more transitions and 3.84 to 3.92 times more places than that of 8×8
k-stage SEN does. But this has not affected the unfolding performance much, in the sense
that we did not experience any illegal termination of unfolding procedure due to unaccept-
able performance. In fact, the number of components in constructed complete unfoldings by
orders of magnitude much more smaller than the upper bound for the number of nodes that
implemented software tools can handle, e.g., according to system specifications GreatSPN
tool is capable of creating an unfolding with 1025 nodes.

The optimization was an essential part of our experiments as we wanted to build the state
equations on more compact nets. As we expected, the optimized complete unfoldings were
inherently more compact than corresponding complete unfoldings due to the elimination of
unnecessary components such as dead transitions, 0-bounded places, etc. The figures in the
last two columns of Table 1 illustrate the rates of growth of optimized complete unfoldings
with respect to original CP-nets. For the number of places the rate of growth was in the
order of N being less than N for all instances, while this ratio for number of transitions was
bounded by N 2.

Finally we turn to run times, as seen in column 6 of Table 1. For the most time-consum-
ing instance of 16 × 16 6-stage SEN it took less than 30 min to create the components of
associated optimized complete unfolding.

6.2 Verification of reachability by means of invariants

The data transfers between the GreatSPN tool and the Matlab were implemented using interface
program designed by means of C program code. For each instance in Table 1, the GreatSPN
tool returned an output file containing related optimized complete unfolding stored in rather
scrambled manner. The interface program extracted the entries of corresponding incidence
matrix and initial marking from an output file and stored in separate text files. Finally, the
destination markings were created in accordance with the randomly chosen permutations (see
Table 2), that we tested for admissibility to SENs. For each instance and each permutation,
the interface program returned three text files; one for the incidence matrix, one for the initial
marking, and one for the destination marking.

We used the Gaussian elimination method, which is integrated into the Matlab standard
functions library, to solve the system of linear algebraic equations. It should be noticed we
did not attempt a sparse or matrix-free implementation since the time taken by the Matlab
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Table 3 Experimental results on
permutation admissibility

Instances π1 π2 π3 π4 π5 π6 π7 π8

8 × 8 1-stage SEN × � × ×
8 × 8 2-stage SEN � × × ×
8 × 8 3-stage SEN × × � ×
8 × 8 4-stage SEN × × × �
16 × 16 1-stage SEN × × × �
16 × 16 2-stage SEN � × � ×
16 × 16 3-stage SEN × × × ×
16 × 16 4-stage SEN × × × ×
16 × 16 5-stage SEN × × × �
16 × 16 6-stage SEN � � � ×

solver was negligible small, e.g., for the most time-consuming case of 16 × 16 6-stage SEN
it took a little over 2 s to complete the task.

The results of computer experiments for admissibility of permutations are summarized in
Table 3. In this table, a check mark indicates that the permutation is admissible to the MIN.
We verified the consistency of these results with known analytical methods as far as this was
possible. For instance, due to unique-path structure of 8 × 8 1- through 3-stage and 16 × 16
1- through 4-stage SENs, we were capable to use the balanced matrices characterization to
check the admissibility of aforementioned permutations. For all such cases the results of
computer experiments were confirmed by the analytical results.

7 Conclusions and further work

This paper exploits the relationship between interconnection networks and Petri nets to the
benefit of both fields. We are not aware of any work that explores the potential of modern
Petri net analysis methods for investigation of interconnection networks, in the depth given
here. To the best of authors’ knowledge the previous work [2], where we explored the per-
mutation capability characterization of MIN’s through state space analysis of CP-nets, was
the first attempt to adopt CP-nets for analysis of interconnection networks. The present work
assesses the applicability of the unfolding technique and the invariants method to intercon-
nection networks. The results of computer experiments demonstrate the feasibility of our
approach.

The main outcomes of this work are summarized below:

• It is easy to design a CP-net model of interconnection network.
• Complete unfoldings obtained before and after the optimization step are polynomial in

the MIN’s size, which allows us to avoid a memory overflow.
• Optimized complete unfoldings obtained in this work employ acyclic structure, which

enables us to implement the invariants method.
• The solution of permutation admissibility problem in terms of CP-nets can be handled

with existing powerful software tools.

We believe that a more extensive study of the relationship between interconnection net-
works and Petri net analysis methods can be fruitful for investigation of fault-tolerance and
reliability characterizations of interconnection networks.
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