
Collision Avoidance in Intelligent Transport Systems:
towards an Application of Control Theory

Béatrice Bérard†, Serge Haddad∗, Lom Messan Hillah‡, Fabrice Kordon‡ and Yann Thierry-Mieg‡

Abstract— Safety is a prevalent issue in Intelligent Transport
Systems (ITS). To ensure such a vital requirement, method-
ologies must offer support for the careful design and analysis
of such systems. Indeed these steps must cope with temporal
and spatial constraints associated with mobility rules and
parallelism which induce a high complexity. Here we handle
the problem of unexpected and uncontrollable vehicles which
significantly endanger the traffic. In this context, we propose
to apply discrete control theory to a model of automatic
motorway in order to synthesize a controller that handles
collision avoidance. This approach includes two parts: the
design of a formal model and an efficient implementation based
on hierarchical decision diagrams.

I.
The Intelligent Transport Systems (ITS) community tries

to deal with the numerous challenges that arise when de-
signing secure and reliable software dedicated to automatic
transport systems.

Several recent ITS projects aim at providing assistance to
drivers and deal with partially automated motorways. The
community investigated first a fully automated infrastructure
and vehicles approach (as in the PATH [1] project) in the
1990’s. That approach was then abandoned in favour of a new
line of research and development activities, more centered
on safety strategies to ensure properties such as Collision
Avoidance or Safety Margin for Assistance Vehicles [2].

This vision relies on cooperative systems where "road
operators, infrastructure, vehicles, their drivers and other
road users will cooperate to deliver the most efficient, safe,
secure and comfortable journeys" [3]. Implementing such a
system then follows a peer-to-peer organisation where each
vehicle must fully cooperate in a time-constrained and safety-
critical environment.

In that context, many projects are dealing with safety-
oriented applications based on sensors, communication de-
vices and protocols as well as distributed traffic management
systems involving cooperation between the infrastructure and
vehicles [4], [5], [6]. Thus, reliability, flexibility in the design
as well as safety are primary issues. Such systems are even
more complex to analyse than previous distributed systems.
Consequently, there is a need for a specific methodology and
tools to design and analyse them.

In this paper, we propose an approach for the mod-
elling and analysis of an automatic motorway system that

†Université Paris Dauphine, LAMSADE, CNRS UMR 7024
∗Ecole Normale Supérieure Cachan, LSV, CNRS UMR 8643
‡Université Pierre & Marie Curie, LIP6/MoVe, CNRS UMR 7606
contact email: berard@lamsade.dauphine.fr
This work has been partially supported by the ModelPlex European inte-

grated project FP6-IP 034081 (Modeling Solutions for Complex Systems)

is emblematic of ITS problems. We formally specify a
particular collision avoidance case study and show how to
check whether a control strategy exists depending on the
parameters (speed, safety distances, etc.). We cope with the
high complexity of the state space thanks to Set Decision
Diagrams (SDD).

The paper is structured the following way. Section II
details the automatic motorway system. We introduce in
section III a formal model for this case study. Then, sec-
tion IV shows how we use the control theory to synthetize
a controller when possible. SDDs and the corresponding
encoding are presented in section V followed by some
experimentation. In section VI, we conclude and give some
perspectives to this work.

II. T

The complexity of Intelligent Transport Systems lies in
some key characteristics. The intrinsic parallelism and dy-
namics which govern the interactions among the involved
entities highlight the highly distributed nature of ITS. The en-
tities that interact are vehicles and infrastructure equipments.
Vehicles and the infrastructure are cooperative and their inter-
actions are spatially constrained by their mobility. Typically,
wireless communications take place within the kilometer
range. Further, they are also temporally constrained.

These characteristics make ITS applications design-
critical; thus safety and reliability are strong requirements
on the models, especially during the validation stage. The
models include control, computation and communication. In
terms of control, key objectives are collision avoidance and
throughput increase.

Current industrial development methodologies do not en-
compass sufficiently enough formal approaches for the qual-
itative analysis of ITS models. Vehicles are dynamic systems
whose trajectories evolve according to physical parameters
such as speed, acceleration, etc. Their state is a set of values,
including their position. For qualitative analysis, the main
issue in traffic management is the full comprehension of the
decision-making process based on the knowledge of vehicles’
states so that efficient algorithms can be designed. It can
be carried out either by synthesizing a controller, or by the
exhaustive exploration of the system’s state space.

The exhaustive exploration of the system’s state space
allows one to understand its dynamics from the behavioral
description of vehicles as presented in [7]. This approach
relies on model checking, using state space symbolic rep-
resentation techniques whereby large state spaces can be
handled.

It is therefore natural in a control-oriented perspective to
seek control strategies solutions for traffic management. To
do so, we use control theory [8] to synthesize a controller for
traffic management. Our main goal is collision avoidance.

The collision problem is illustrated by the case study
depicted in Fig. 1. Vehicles are driving along a motorway
section. We assume that all but one are fully cooperative;
they are controlled and then immediately comply with the
directives issued by the infrastructure to handle the traffic.
One vehicle is uncontrolled (the black one in the figure);
it means that its behavior only respects physical constraints
(such as it cannot stop immediately and must respect inertial
constraints). This feature represents either failures of the
vehicle or unpredictable behavior of the driver.

L0

L1

L2

Fig. 1. The automatic motorway system

In this case study, the cooperative vehicles are handled by
the controller for which we are seeking a collision avoidance
strategy, whereas the uncontrolled ones are handled by the
environment. The strategy must always be a successful one,
so that collisions can be avoided whatever the behavior of
the uncontrolled vehicle. There is at most one uncontrolled
vehicle in the system.

That situation is now described by the following parame-
ters, which will be formally defined in section III.

The motorway has a static and a dynamic part. The static
part includes a set L = {Li, 0 ≤ i ≤ n − 1} of lanes with
n ∈ N∗ the number of lanes and l ∈ N the length of the lanes.
The dynamic part consists of a finite set A of the vehicles
currently on the motorway.

Our model will represent discrete positions and moves for
vehicles. Although hybrid automata could have been used to
model the system, most verification and control problems are
known to be undecidable in this framework [9]. Therefore
we have chosen the discretization approach.

III. F

We model a section of a motorway, with the aim to avoid a
crash between two or more vehicles due to an uncontrollable
vehicle. A configuration of the system consists of the set of
vehicles present in the section. The problem can be described
as follows: given an initial configuration and a set of (bad)
target configurations, can we design a controller that avoids
reaching such configurations?

A. Elements of the system

Definition 1 (Section): A section is composed of nl posi-
tions. A position is defined by its coordinates (x, y), where
y ∈ {0, . . . , n − 1} denotes the lane and x ∈ {0, . . . , l − 1}
denotes the horizontal position in the lane.

The following constants are associated with the section.

• vmax (resp. amax) is the maximum speed (resp. accel-
eration) reachable by a vehicle. These values depend on
hypotheses related to vehicles.

• vmin is the minimum possible speed of a vehicle en-
tering the section. This value depends on hypotheses
related to the section.

• dmin is the minimum possible delay between two suc-
cessive entrances of vehicles in a given lane. This value
depends on hypotheses related to the section.

We consider a synchronous behaviour where a change of
states occurs every time unit.

Definition 2 (Vehicle): A vehicle present in the section is
a tuple a = 〈a.x, a.y, a.v, a.c〉 where:
• (a.x, a.y) is the position of a;
• a.v is the current speed of a; the speed is an integer

denoting the number of positions visited during one time
unit. It ranges over {0, . . . , vmax}.

• a.c ∈ B is a boolean denoting whether the vehicle is
controllable.

Definition 3 (Configuration): A configuration of the sec-
tion is a tuple s = 〈d, A〉 where:
• d is an integer array indexed by the lanes such that d[i]

denotes the time elapsed since the last entrance on lane
i when d[i] < dmin and otherwise d[i] = dmin.

• A is a finite set of vehicles.
More formally, we define:
Definition 4 (Move of a vehicle):

Let a = 〈a.x, a.y, a.v, a.c〉 be a vehicle, its new state
is written as 〈a.x′, a.y′, a.v′, a.c′〉, where:
• a.x′ = a.x + a.v, i.e. the move is fixed by the current

speed. When a.x′ ≥ l then the vehicle is deleted.
• If a.v > 0 then a.y′ ∈ [a.y−1, a.y+1]∩[0, n−1], otherwise

a.y′ = a.y. When its speed is not null a vehicle can non
deterministically change lane.

• a.v′ ∈ [a.v − amax, a.v + amax] ∩ [0, vmax]. A vehicle
can non deterministically change its speed according to
the capacity of acceleration and speed while keeping a
non negative speed.

• a.c′ = a.c. The move of a vehicle does not change its
status w.r.t. controllability.

B. Dimensioning the system

Let us now state some values to dimension the system. We
consider a two-lane motorway (i.e. n = 2). The motorway
section we study is 1 kilometer long and structured into 10
meters-long positions, thus l = 100. Taking safety distance
into account, there are at most 25 vehicles on each lane.

A change of state as described in section III-C corresponds
to one second, which is reasonable when considering human
reaction in such situations. In a first approach, we choose
rather large discretization steps: the maximal speed is 40m/s
(this corresponds to 144km/h), with integer speed values
from 0 to 4.

Values for acceleration are −1, 0, 1. Thus, it allows a speed
variation of −10m/s, +10m/s or a stable speed at each round
of the system’s execution.

C. Evolution of the system

The system evolves from state to state. A change from
state s = 〈d, A〉 to a state s′ = 〈d′, A′〉 consists of two
successive half-moves:
• The first one is triggered by the environment and con-

sists in (possibly) marking a vehicle as uncontrollable
when there is none, inserting new vehicles and moving
the uncontrollable vehicle if it exists.

• The second one is triggered by the controller and
consists in moving the controlled vehicles.

Thus, the evolution scheme is described by a sequence
s→ s1 → s′ of transitions which are more precisely defined
below.

Definition 5 (Environment transition): Let s = 〈d, A〉
be a configuration, then a new state s1 = 〈d1, A1〉 can
be reached by a transition from the environment by the
following operations.

1) If no vehicle in A is uncontrollable then the environ-
ment may select a ∈ A and performs a.c = false.

2) For every lane i, the environment performs d1[i] =

min(d[i] + 1, dmin). If d1[i] = dmin then it may
insert a new vehicle a on lane i: a.x = 0, a.y = i,
a.v ∈ {vmin, . . . , vmax}, a.c = true and reset the delay
d1[i] = 0.

3) If there is an uncontrollable vehicle a, its move is
performed according to definition 4.

Observation. With no extra cost, we could add requirements
on the positions at which a vehicle becomes uncontrollable.
For readability sake, we stick to a simpler model.

Definition 6 (Controller transition): Let s1 = 〈d1, A1〉 be
a configuration (obtained by a transition from the environ-
ment, as explained below), then a new configuration s′ =

〈d′, A′〉 can be reached by a transition from the controller
by moving every controllable vehicle of A1 according to
definition 4.

Definition 7 (Complete transition): Let s = 〈d, A〉 be
a configuration, then a new configuration s′ = 〈d′, A′〉
can be reached by a complete transition if there exists an
intermediate configuration s1 = 〈d1, A1〉 such that there is a
environment transition from s to s1 and a controller transition
from s1 to s′. Furthermore the following consistency rules
must hold. For every a1 , a2 ∈ A ∩ A′,

1) a1.x′ , a2.x′∨a1.y′ , a2.y′. Two vehicles do not share
the same position.

2) If a1.x < a2.x then either a1.x′ < a2.x′ or (a2.x′ ≤ a1.x′

and a1.y = a1.y′ and a2.y = a2.y′ and a1.y , a2.y).
If a1 is behind a2, then either a1 stays behind a2 or
a1 passes a2 but then the two vehicles must stay on
different lanes.

3) If a1.x = a2.x then a1.y = a1.y′ and a2.y = a2.y′. If two
vehicles are at the same horizontal position (but on
different lanes as specified in condition 1), then they
stay on their respective lane.

These consistency rules prevent risky situations that must
be avoided. Examples of such situations are illustrated in
figures 2 and 3. White vehicles correspond to the current

state, grey vehicles correspond to the state at next timeframe.
So, definition 7 ensures that any controlled move remains
safe.

L0

L1 a1 a2

a2 a1

L0

L1

a2

a1 a1a2

L0

L1

a1

a2

a2

a1

Fig. 2. Some risky situations avoided by rule 2 in definition 7

L0

L1 a1

a2

a2

a1

L0

L1

L0

L1

a1

a2

a2a1

a1

a2

a2

a1

Fig. 3. Some risky situations avoided by rule 3 in definition 7

IV. C T A

First introduced by Ramadge and Wonham [8] at the
end of the eighties, the problem of control was described
for discrete event systems as follows: given a process P
(the plant) and a set of admissible behaviours Spec (the
specification), does there exist a controller (also called a
supervisor) C such that all behaviours of the supervised
system, denoted by P||C, are in Spec ? The synthesis problem
is to construct such a controller if it exists.

The basic process P is an open system interacting with
an environment. Thus, the alphabet of events is the disjoint
union of two subsets containing the uncontrollable events
(from the environment) and the controllable events (which
can be handled by the controller). Moreover, the controller
must react to any uncontrollable event.

Of course, many works have subsequently extended this
theory, for instance replacing the discrete event system Spec
by a formula from some logics and relating control theory
to game theory [10]: the two players are the environment
and the controller and the synthesis problem is solved by
finding a winning strategy. Instead of looking for controllers
with minimal state size (although not empty), which is
proved NP-hard, other approaches try to find less restrictive
controllers [11].

In our context, the specification is the set of behaviours
that do not lead to a crash and we reformulate the problem
in terms of reachable states.

Given a configuration s, we denote by S ucce(s) the set of
successor configurations of s by an environment transition
and S uccc(s) the set of successor configurations of s by a
controller transition.

Let S be the set of all possible configurations. Then S fail =

{s | S uccc(s) = ∅} denotes the set of configurations for which
the controller cannot avoid a crash between vehicles. We also
set S ∗ = S \ S fail.

We denote by s0 the initial configuration, which consists
of an empty section, ready to “receive” vehicles on its lanes.

Definition A strategy is a mapping f from S ∗ to S such
that f (s) ∈ S uccc(s). For a strategy f , the reachability space
G f (s0) = Gc

f (s0) ∪Ge
f (s0) is defined inductively by:

• s0 ∈ Gc
f (s0)

• If s ∈ Gc
f (s0) then ∀s′ ∈ S ucce(s), s′ ∈ Ge

f (s0)
• If s ∈ Ge

f (s0) ∩ S ∗ then f (s) ∈ Gc
f (s0)

Definition A strategy f is winning if Ge
f (s0) ∩ S fail = ∅.

We informally describe the standard algorithm to check
whether a winning strategy exists.

1) We handle two sets of “bad” configurations S bade and
S badc. Initially S bade = S fail and S badc = ∅.

2) We extend these sets by the following rules.
a Let s be a configuration such that ∀s′ ∈

S uccc(s), s′ ∈ S bade. Then S badc = S badc ∪ {s}.
b Let s be a configuration such that ∃s′ ∈

S ucce(s), s′ ∈ S badc. Then S bade = S bade ∪ {s}.
3) We stop the algorithm either when s0 ∈ S badc or when

the rules are no more applicable. In the former case, a
winning strategy does not exist while in the latter one
it does.

Of course, while the algorithm is polynomial in the size
of the system, the state space of the system is very large,
so that we do not want to directly implement the algorithm.
Instead, we now present a particular data structure based on
SDD.

V. D D E

In this section we present how to explore the behaviors
of the system using a symbolic representation based on
decision diagrams. Decision diagrams (DD) are a compact
data structure designed to represent large data sets. They
allow model-checking of very complex systems [12]. They
are based on a shared decision tree where each path rep-
resents a state of the system. Since the number of paths in
a DD may be exponential w.r.t. the number of nodes used
to represent them, the reduction factor associated with this
technique is generally high. The effectiveness of DD is due
to their canonical form, i.e. a set of values has a single
DD representation, which is stored in a hashtable. Thanks
to this characteristic, deciding if two sets stored as DD are
equivalent is a constant complexity operation. Furthermore,
using an operation cache, usual set-theoretic operations are
computed with complexity at most quadratic to the number
of nodes. Application specific operations (like a transition

relation) also use a cache to have polynomial complexity
w.r.t. the number of nodes.

Many variants of DD have been proposed in the literature.
We use Set Decision diagrams (SDD) [13] which offer a
hierarchical representation that increases sharing of similar
subcomponents, and a flexible operation framework. This
section describes SDD [13], then shows how to apply SDD
to check controllability of the ITS.

A. Set Decision Diagrams

Set Decision Diagrams (SDD) are data structures for
representing sequences of assignments of the form ω1 ∈

s1;ω2 ∈ s2; · · ·ωn ∈ sn where ωi are variables and si are
sets of values.

We assume no variable ordering, and the same variable can
occur several times in an assignment sequence. We define
the usual terminal 1 to represent accepting sequences. The
terminal 0 is also introduced and represents the empty set of
assignment sequences. In the following, Var denotes a set
of variables, and for any ω in Var, Dom(ω) represents the
domain of ω which may be infinite.

Set Decision Diagram The set S of SDD is inductively
defined by δ ∈ S if:
• δ ∈ {0, 1} or
• δ = (ω, π, α) with:

– ω ∈ Var.
– π = s0] · · ·] sn is a finite partition of Dom(ω), i.e.
∀i , j, si ∩ s j = ∅, si , ∅, n finite.

– α : π→ S, such that ∀i , j, α(si) , α(s j).

We denote by ω
s
−→ δ, the SDD (ω, π, α) with π = s]

(Dom(ω) \ s) α(s) = δ, α(Dom(ω) \ s) = 0. By convention,
when it exists, the element of the partition π that maps to
the SDD 0 is not represented.

Despite its apparent simplicity, this definition supports
complex data structures. For instance, variables of domain
S can be defined, introducing hierarchy in the data structure.

SDD support standard set theoretic operations (union,
intersection, set difference) for compatible SDD as well as
a powerful and flexible mechanism to define user operations
called inductive homomorphisms.

A small example showing the hierarchical representation
is presented in the next section, in which we encode states
of the ITS system using SDD.

B. Encoding the motorway problem

1) State representation: A state of the motorway is com-
posed of the value for the entry delays for each lane, and of
the positions, speed and control value of the vehicles.

We thus introduce a variable delays such that
Dom(delays) = [0 . . . dmin]n, i.e. a vector with number
of lanes n entries which vary between 0 and dmin.

We also introduce a variable vehicle such that
Dom(vehicle) = {〈x, y, v, c〉|x ∈ [0 . . . l−1], y ∈ [0 . . . n−1], v ∈
[0 . . . vmax], c ∈ B} representing the state of a vehicle. The
state of the set of vehicles is encoded as a sequence of
vehicle variables, concatenated to the delays variable.

1

delay[0]

delay[1] 0..2

0..2

CONTROL

LANE

POS

SPEED0..4

0..10

0..1

1
CONTROL

0
CONTROL

0..1

del0 veh1 veh2 veh3
x1 x2 x4 x1

1

delays

vehicle

vehicle

vehicle

veh2

veh2
vehicle

vehicle

veh3

veh1 veh2

veh1 veh2

del0

m
ai

n
le

ve
l

sh
ar

ed
 le

ve
l

Fig. 4. SDD hierarchical encoding of the automatic motorway with the
following values: dmin = 2, vmax = 4, l = 11, n = 2.

Figure 4 presents the SDD encoding of the ITS. We
provide more detail later. But roughly speaking, the part
above (main level) shows a set of states of the motorway,
and the one below (shared level) represents the values which
label the arcs of the first structure. As one can see, sharing
is high as vehicle states (such as veh2) are reused several
times (four times with our values for veh2).

2) State encoding and vehicle positions:
• Ordering: to obtain a more canonical form, since all

vehicles are considered equivalent, there is no need to
preserve identity or insertion order of vehicles. The state
signature is thus sorted according to vehicle position:
a < b ≡ a.x < b.x ∨ (a.x = b.x ∧ a.y < b.y). Since
two vehicles cannot occupy the same position, this
defines a total order over vehicles, allowing to define
a canonical representation. A second positive aspect of
this ordering is that it improves locality of actions, as
conflicts between vehicle movements can be evaluated
mostly by examining the states of the nearest vehicles.

• Position: encoding position information is a tricky issue,
since naive encoding schemes are liable to produce ex-
ponential blowup in SDD representation size. The basic
encoding scheme consists in giving for each vehicle its
position w.r.t. the origin. But this introduces a strong
dependency amongst the variables representing vehicle
states, namely the successor b of a vehicle a will always
verify b.x ≥ a.x. If we consider the set encoding of
all potentially reachable states S , we obtain a different
successor node from the node encoding a for each value
of a.x. We can thus roughly estimate at l|A|−1 nodes (|A|
the number of vehicles) the size of the SDD needed to
represent S , which is not manageable.
A first idea to fight this effect consists in encoding for
each vehicle a its position ∆x relative to the preceding
vehicle, or relative to the origin for the first vehicle

instead of its absolute position a.x. This drastically
improves the locality of dependencies. However we
must be careful not to reintroduce a global variable
dependency when we introduce the cutoff horizon. In-
deed, the firing rule (definition 4, first item) requires to
delete vehicles that have left the section, that is a.x ≥ l.
But if we strictly apply this rule, we obtain a new
global dependency stating that the sum of ∆x positions
along any path (state) is at most l− 1. This dependency
is as costly to represent as in the first case (absolute
positions).
We therefore decided to represent a maximum number
of vehicles rather than a total maximum distance cutoff

criterion, with a new horizon cutoff criterion ensuring
that any state with distance l or more between any
two vehicles is not represented. This means we actually
monitor a variable distance depending on the state
considered. In any case the last vehicle ensures we
monitor at least l positions, so overall we monitor at
least |A| + l positions and potentially |A| · l.

The next step consists in defining the initial states of the
controllability problem. We construct this set S fail in the
following manner :

1) We first construct a set of states in which all variables
are unconstrained. This means lane delay variables
vary within 0 . . . dmin, and for each vehicle a =

〈x, y, v, c〉 variable we allow x ∈ {0, . . . , l − 1}, y ∈
{0, . . . , n − 1}, v ∈ {0, . . . , vmax}, and c ∈ B.
This produces a linear size SDD encoding a superset
of all potentially reachable states.

2) We then prune from the structure paths such that more
than one vehicle is uncontrolled, as by definition of the
problem, there can be only one uncontrolled vehicle.
This introduces a weak dependency on the variables,
thus does not significantly increase representation size.
Figure 4 presents the encoding obtained at this stage of
the construction. At the top of the figure, SDD vari-
ables are represented: the variable "delays" contains
the value of the delay variables for each lane, while
each "vehicle" variable represents a vehicle state. The
labels on the arcs of the structure are references to
the SDD represented at the bottom of the figure. For
instance, in the path d

del0
−−−→ v

veh1
−−−→ v

veh2
−−−→ v

veh2
−−−→ 1 the

first vehicle is uncontrolled (see veh1 at bottom), thus
the two other vehicles must be controlled (they both
are in states veh2 that fulfill this property).

3) We then remove states in which controlled vehicles
occupy the same position, as the controller transi-
tion rules prevent this from happening. However, the
uncontrolled vehicle can overlap another, as we are
constructing the set of failure states, in which the
environment has just finished playing, and it is the
controller’s turn to try and avoid a collision. This is
done by enforcing a constraint stating that for any two
successive controlled vehicle a and b, if b.∆x = 0 then
b.y > a.y. The dependency introduced is not severe

thanks to its strong locality, and does not significantly
increase the size of the SDD encoding.

This produces the set of all potentially reachable states
that we will use to initiate our construction.

We need to select the states S f ail where the controller
cannot make a move. To this end we use the fact that
changing lanes can only increase the number of interference
possibilities between vehicles, as by the consistency rules
defined, it is not possible in a single step to both change
lanes and overtake a vehicle.

We thus only consider moves in which the controller
keeps each vehicle in its lane. We thus obtain a state based
characterization of failure states: in any state for which the
distance between a vehicle and the next vehicle on its lane
is smaller than the difference in their speeds, a collision
is unavoidable at this step. This constraint introduces more
dependencies among variables, as it requires we control at
most the n next vehicles (n number of lanes), to reach the
next vehicle on the current lane.

We also need to control the sum of ∆x positions of these
n vehicles to compute the distance with the current vehicle
a. When computing this sum, if it exceeds a.v the test is
considered successful, as b.v ≥ 0. Consequently, the size
of the encoding becomes sensitive to the number of lanes as
well as the vmax setting. However, these parameters typically
have reasonably low values (vmax = 4, n ≤ 6).

C. Assessment of the data structure

We have run some preliminary experiments to confirm that
this encoding is viable. In this experience, we have computed
the set S fail as presented above. We let vary two parameters:
the number of cars (50, 75, 100, 125, 150) and the number
of lanes (2, 3, 4). Note that the realistic configuration given
in section III-C corresponds to the smallest we processed.
Execution was performed on a PC running Linux with:
Core2duo, 3.4GHz, 3Gb.

50

100
150

234

140

190

240

290

340

390

440

490

50

100
150

234

0

1x10

2x10

3x10

4x10

5x10

6x10

7x1010

10

10

10

10

10

10

10

5

5

5

5

5

5

5

Fig. 5. Size of S fail (left) and its corresponding SDD encoding (right).

Figure 5 shows the evolution of the computed number
of states in S fail (left) and of the number of SDD nodes
required for its encoding (right). Computation of the largest
configuration (150 cars, 4 lanes) took about 25 minutes and
did not exhaust main memory. The ratio between the two
figures is exponential.

This experiment is not yet complete as we have not defined
a controller policy and therefore the backward firing required

by control theory has not yet been implemented. However,
it shows the feasibility of our approach to seek a winning
control strategy with realistic values.

VI.

Our goal is to use control theory to find winning strategies
for collision avoidance in an automatic motorway. Such a
system is challenging due to the high number of entities and
the complexity of their interactions. This dramatically raises
the combinatorial explosion issue.

Prior to algorithmic issues, the first problem is to be able
to store all possible configurations of the system.

In this paper, we elaborate a formal model to specify the
automatic motorway. We also propose an efficient encoding
technique to cope with the combinatorial explosion problem.

Experimentation shows that our approach is valid. We can
store realistic configurations dealing with up to 150 vehicles
dispatched over 4 lanes in a 1km long section.

The next step consists in implementing the search for
winning strategies for collision avoidance.

R
[1] R. Horowitz and P. Varaiya, “Control design of an automated highway

system,” in Proc. of the IEEE 88(7), 2000.
[2] Intelligent Vehicle Initiative, “Saving lives through advanced vehicle

safety technology,” US Department of Transportation, http://www.its.
dot.gov, September 2005.

[3] P. Bly, “e-Safety - Co-operative Systems for Road Transport (IST Work
Progamme 2005-2006),” European Commission, Tech. Rep., 2004.

[4] J.-M. Blosseville, “Driving assistance systems and road safety: State-
of-the-art and outlook,” in Annals of Telecommunications - Intelligent
Transportation Systems, J. Ehrlich, Ed. GET-Lavoisier, March-April
2005, vol. 60, no. 3-4, pp. 281–298.

[5] R. Bishop, “Intelligent Vehicle R&D: a review and contrast of pro-
grams worldwide and emerging trends.” in Annals of Telecommuni-
cations - Intelligent Transportation Systems, J. Ehrlich, Ed. GET-
Lavoisier, March-April 2005, vol. 60, no. 3-4, pp. 228–263.

[6] Y. Robin-Jouan, J. Ehrlich, B. Guillaumin, M. Delarche, and
M. Dutech, “Transport-specific communication services: Safety-based
or critical applications for mobiles and cooperation with infrastructure
networks,” in Annals of Telecommunications - Intelligent Transporta-
tion Systems, J. Ehrlich, Ed., vol. 60, no. 3–4. GET-Lavoisier, March-
April 2005, pp. 405–440.

[7] F. Bonnefoi, L. Hillah, F. Kordon, and G. Frémont, “An approach to
model variations of a scenario: Application to Intelligent Transport
Systems,” in Workshop on Modelling of Objects, Components, and
Agents (MOCA’06), Turku, Finland, June 2006.

[8] P. Ramadge and W. Wonham, “The control of discrete event systems,”
in Proceedings of the IEEE, vol. 77, no. 1. IEEE Computer Society,
1989, pp. 81–98.

[9] R. Alur, C. Courcoubetis, N. Halbwachs, T. A. Henzinger, P.-H. Ho,
X. Nicollin, A. Olivero, J. Sifakis, and S. Yovine, “The Algorithmic
Analysis of Hybrid Systems,” Theor. Comput. Sci., vol. 138, no. 1, pp.
3–34, 1995.

[10] A. Arnold, A. Vincent, and I. Walukiewicz, “Games for synthesis of
controllers with partial observation,” Theor. Comput. Sci., vol. 303,
no. 1, pp. 7–34, 2003.

[11] R. Su and W. Wonham, “Supervisor reduction for discrete-event
systems,” Discrete Event Dynamic Systems, vol. 14, no. 1, pp. 31–
53, 2004.

[12] J. Burch, E. Clarke, and K. McMillan, “Symbolic model checking:
1020 states and beyond,” Information and Computation (Special issue
for best papers from LICS90), vol. 98, no. 2, pp. 153–181, 1992.

[13] J.-M. Couvreur and Y. Thierry-Mieg, “Hierarchical Decision Diagrams
to Exploit Model Structure,” in Formal Techniques for Networked and
Distributed Systems - FORTE 2005, vol. 3731. LNCS: Springer
Verlag, 2005, pp. 443–457.

