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Abstract. As some structural properties, like generative families of pos-
itive P-invariants, can only be computed in P/T nets, unfolding of Col-
ored Petri Nets is of interest. However, it may generate huge nets that
cannot be stored concretely in memory. In some cases, removing the dead
parts of the unfolded net can dramatically reduce its size, but this op-
eration requires the unfolded net to be represented anyway. This paper
presents a symbolic representation of unfolded nets using Data Decision
Diagrams. This technique allows to store very large models and manip-
ulate them for optimization purpose.

1 Introduction

Colored Petri nets, introduced by K. Jensen in 1981 [8] are very convenient for
modeling complex systems. However, basic structural properties of P/T nets [11]
remain difficult to extend to Colored Petri Nets: a generative family of positive
invariants can only be computed under restrictive conditions [5] and structural
bounds are generally not available.
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Fig. 1. Example of Net unfolding

To overcome this problem, modelers may transform the colored Petri net into
an equivalent P/T net. This operation, called unfolding, generates for each orig-
inal place, numerous P/T places instances according to its color domain. More-
over, one P/T transition is generated for any possible binding of each colored
transition. This leads to huge unfolded net. As an example, the colored model
(a in Figure 1) is unfolded into a P/T net (b in the figure). Hopefully, in many
cases, simplifications can lead to a smaller unfolded net according to:
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1. the initial marking of places (here, place P1 in the colored model lacks some
marking and thus, some of the corresponding P/T places are zero-marked),

2. false guards on transitions.

Model c in Figure 1 shows the unfolded Petri net after optimization.
Unfolding Colored Petri nets raises several problems when they become large

because the result cannot be stored in memory. This is typically the case for
Petri nets derived from higher level specification (such as UML as suggested in
[1]). Optimization of the unfolded net, when possible, requires the unfolded net
to be represented anyway before optimization.

In this paper, after a brief remainder of Well-Formed Petri Nets [3] in Sec-
tion 2 and a presentation of Data Decision Diagrams (DDDs) [4] a shared struc-
ture we use to store huge P/T nets in Section 3, we present in Section 4 how
P/T places and transitions are symbolically stored. P/T arcs, however, are not
represented, they are computed on the fly from the colored description when
needed. Section 5 describes the main contribution of this work: implementation
of the optimization algorithms in this symbolic context. We end with experimen-
tation on various types of specifications to assess when our technique is efficient
in Section 6.

2 Well-Formed Colored Petri Nets

In this section we describe Well-Formed Petri Nets (WN) [3], the input formal-
ism for our work. Originally designed to ease structural verification algorithms
expression, this formalism is a subset of Colored Petri nets with a simple and
rigorous syntax and is also used to exploit model symmetries. Definitions in this
section are adapted from [12].

Classes and domains define the color structures used in WN models, allowing
tokens to be identified from one another.

Definition 1 (Classes, domains and variables). A class is a cyclicly ordered
finite set of elements with successor (resp. predecessor) function defined. A class
is an interval over the positive naturals k1..k2, where k1 < k2, the successor of
k2 is k1 (resp. the predecessor of k1 is k2).

A domain is a Cartesian product of classes.
Variables are defined over classes, but not over domains.

The next definition introduces basic expressions over variables. Those basic ex-
pressions are used in predicates and domain functions.

Definition 2 (Basic color functions). A basic color function E(x) is the
identity function (noted x) or x++n or x--n the nth successor and predecessor
of variable x respectively or the constant function (denoted by the correponding
class member).

Definition 3 (Standard Predicates). A standard predicate is a Boolean ex-
pression of basic predicates. The allowed basic predicates are: E(x) = E(y),
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E(x) �= E(y), E(x) < E(y) where x and y are variables of same class and E(x)
and E(y) are basic color functions.

Definition 4 (Domain functions). Let D = 〈C1, . . . Cn〉 be a domain where
Ci are classes. Let xi be a variable defined over the class Ci.

A basic domain function BF of D is : BF : 〈C1, . . . Cn〉 → Bag(〈C1, . . . Cn〉)
where BF is a function of the form BF = k.〈E(x1), . . . , E(xn)〉.

A Domain function F of D is: F : 〈C1, . . . Cn〉 → Bag(〈C1, . . . Cn〉) where F
is a function of the form F = BF1 + · · · + BFn where BFi is a basic domain
function.

Definition 5 (Well-Formed Colored Petri Nets). A Well-Formed Net is a
twelve-tuple N = 〈P, T, Pre, Post, C, D, V, V Dom, TV ar, Dom, gd, M0〉 where:

– P and T are disjoint finite non empty sets (respectively the places and tran-
sitions of N),

– V is a set of variables,
– C and D are respectively sets of classes and domains,
– V Dom is a function that maps variables to classes,
– TV ar is a function that maps transitions to subsets of V ,
– Dom is a function defining the color domain of each place and transition,

the domain of transition t is a Cartesian product of the classes V Dom(v)
for each v in TV ar(t),

– gd is a function defining for each transition t its predicate (called guard),
variables used in basic predicates belong to Tvar(t),

– Pre[p, t] (resp. Post[p, t]) is the pre-incidence (resp. post-incidence) func-
tion: a domain function over Dom(p), variables used in each basic color
functions belong to the corresponding class in the domain,

– M0 : M0(p) ∈ Bag(Dom(p)) is the initial marking of place p.

An equivalent P/T net can be assiociated to each WN. To a colored place P are
associated |Dom(P )| ordinay places. Equivalently,to a colored transition t are
associated |V Dom(x1)|∗· · ·∗|V Dom(xn)| ordinary transitions, where xi belongs
to TV ar(t). Ordinary arcs link places to transitions according to Pre and Post.

3 Data Decision Diagrams

Data Decision Diagrams represent assignment sequence sets of the form e1 =
x1; e2 = x2; · · · en = xn where ei are variables and xi are values. Like in Binary
Decision Diagrams, common parts are shared at the beginning and the end of the
sequences. No fixed order is needed over the assignments sequences and multiple
reassignments are allowed. Moreover, no assumptions are done on the variables
domains.

DDDs use three terminal nodes: 0, 1 and �. As usual, a sequence ending with
1 is part of the set described by the DDD, a sequence ending with 0 is not part
of this set and a sequence ending with � means that an error occurred in a
previous operation. In the following, E denotes a set of variables, and for any
e ∈ E, Dom(e) represents the domain of e. For more detailed information see [4].
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Definition 6 (Data Decision Diagram). The set ID of DDDs is defined by
d ∈ ID if:

– d ∈ {0, 1, �} or
– d = (e, α) with:

• e ∈ E
• α : Dom(e) → ID, such that {x ∈ Dom(e) | α(x) �= 0} is finite.

We denote e
a−→ d, the DDD (e, α) with α(a) = d and for all x �= a, α(x) = 0.

We denote e
a..b−−→ d, the DDD (e, α) with α(a) = . . . = α(b) = d and for all

x /∈ {a, . . . b}, α(x) = 0.

This definition allows multiple DDD representations of the empty set, therefore,
each DDD can have multiple representations. An equivalence relation over the
DDDs is thus needed. 0 denotes the empty set and each node equivalent to the
empty set is replaced by 0. This induces a canonical representation.

Since DDDs represent sets, sets operators are defined over DDDs: union +,
intersection ∗ and difference \. DDDs also represent sets of sequences, the con-
catenation operator . is also defined: if d1 and d2 are two DDDs, then d1.d2 is
composed of all possible sequences beginning with a sequence of d1 while the
remainder is a sequence of d2.

The main feature of the DDDs that is attractive for our work is the notion
of homomorphisms: an homomorphism Φ is a mapping on DDDs that maps
the empty set to itself (Φ(0) = 0) and that is linear with respect to the union
(Φ(d1 +d2) = Φ(d1)+Φ(d2)). The identity mapping Id (Id(d) = d) is the easiest
homomorphism one can define. Basic homomorphisms can be composed to create
new homomorphisms: if Φ1 and Φ2 are homomorphisms, then Φ1 ◦ Φ2 is a new
homomorphism.

Another simple homomorphism is the one that takes a couple (variable, value)
as parameters Construct(e, x) and returns the DDD composed of a node labeled
e and an arc leading to terminal node 1, labeled x. Using predefined operators,
DDDs can be created: Construct(A, 1).(Construct(B, 2) +Construct(B, 4)) re-

turns the DDD A
1−→ B

{2,4}−−−→ 1. This DDD is depicted in Figure 2
Many operations on DDDs, like variable re-

A B 1
1

2

4

. Fig. 2. Basic DDD creation

ordering or value modification, cannot be ob-
tained via predefined operators only. A spe-
cial set of homomorphisms is introduced: the
inductive homomorphisms. Those homomor-
phisms associate a DDD to terminal node 1
and apply defined homomorphisms for each
sub-DDD to each couple (variable, value).

Definition 7 (Inductive homomorphism). Let I be an index set. Let (di)i∈I

be a family of DDDs. Let (Φi(e, x))i∈I be a family of homomorphisms.
Then the recursive definition of mappings (Φi)i∈I in Figure 3 defines a family

of homomorphisms called inductive homomorphisms.
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∀d ∈ ID, Φi(d) =

�����
����

0 if d = 0

di if d = 1

� if d = ��
x∈Dom(e) Φi(e, x)(α(x)) if d = (e, α)

Fig. 3. Definition of inductive homomorphisms

4 Shared Structure

In this work, optimization algorithms are designed on P/T nets stored via deci-
sion diagrams. Since we chose to cut the unfolded net representation into several
short decision diagrams, the symbolic structure must allow variable reordering
locally to each set in order to compute P/T arcs. OBDDs [2] cannot, therefore,
be used to store the unfolded net.

For this reason, we have chosen Data Decision Diagrams (DDDs) [4]: a struc-
ture that is not bound to any order, allows variable repetition and offers a large
toolset to handle the structure. After a quick overview of the problem, a detailed
description of the symbolic representation is given.

4.1 Partial Unfolding

Unfolding P ′
n, if n is a place (or T ′

n if n is a transition), of a node n with
Dom(n) = C0 × . . . × Cm is a set of |C0| ∗ . . . ∗ |Cm| nodes N ′

n composed of
unfolded nodes for all possible bindings for each component of Dom(n). It results
in a P/T net where all color classes have disappeared. Partial unfolding of the
same node for color class Cu is a set of

∏
c∈Dom(n)|c=Cu

|c| nodes, composed of
all possible bindings for each component of Dom(n) of color class Cu.

Full unfolding is a special case of partial unfolding, obtained by the successive
partial unfoldings, in any given order, over all color classes. A colored net N is
fully unfolded to a net N ′ = unfold(N) = ◦c∈Cunfoldc(N). Differences between
full and partial unfolding are presented in algorithms of this paper.

4.2 Optimized Unfolding

The number of unfolded nodes in a net can be huge, especially when color classes
contain a lot of elements, or when domains contain a lot of color classes. Unfolding
of the Train [6] model generates more than 109 transitions. Such a net cannot have
a concrete representation in memory and is almost useless if its size is not reduced.

Optimizations can be applied to unfolded nets to reduce their size, but our
previous unfolder needed a concrete representation of the unfolded net to perform
these optimizations. When no concrete representation of the unfolded net was
possible because of its size, the optimizations needed to reduce its size could not
be applied.

The new unfolder described here offers a solution to this problem by the sub-
stitution of the concrete representation of the unfolded nets with a symbolic one
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for their places and transitions, and an implicit one for arcs. Optimizations can
then be applied to huge unfolded nets and, in some cases, their size after opti-
mization can be small enough for a concrete representation generation, usable
by other tools.

4.3 Symbolic Unfolded Net

Symbolic representation of the unfolded net must be compact and allow fast
operations. These two goals being more likely to be achieved using short decision
diagrams, the representation chosen uses several decision diagrams, one for each
colored place and one for each colored transition.

Symbolic representation of sets for unfolded places and transitions is done
using DDD. This structure is well adapted to the representation of sets of integer
vectors, and thus sets of vectors of color class values. Each sequence, in the
representation of unfolded nodes from a node, is interpreted as one unfolded
node. Integer vectors represent then, for an unfolded place or transition, the
values in color classes associated to this particular object.

A symbolic unfolded net is defined above a Well-Formed Net by adding:

– SV P : P × (C × N) → SV and SV T : T ×V → SV : functions returning for
each couple (place× domain component) (the domain component being the
color class and its occurrence number in the domain), resp. (transition ×
valuation variable), the DDD variable in the symbolic representation,

– SP : P → ID and ST : T → ID : for each p ∈ P (resp. t ∈ T ), its unfolded
places (resp. transitions) represented using a DDD,

– M ′
0 : P → ID : for each p ∈ P , the DDD of initially marked unfolded places.

Let us note that arcs are not explicitly represented in a symbolic unfolded net.
Therefore, there is no direct encoding of Pre and Post functions as usually: arcs
are computed on the fly. To do so, four functions are defined to get pre-conditions
or post-conditions of a node :

PreT (t) = {p ∈ P |Pre[p, t] �= ∅} PostT (t) = {p ∈ P |Post[p, t] �= ∅}
PreP (p) = {t ∈ T |Post[p, t] �= ∅} PostP (p) = {t ∈ T |Pre[p, t] �= ∅}

Partial unfolding is supported by this definition as the symbolic representation
only gives an information about the presence of a node, still colored or not, in the
unfolded net. Algorithms are presented for a full unfolding, because notations
for partial unfolding can be less readable, but they also work for partial or are
easily extended to achieve this goal.

We now introduce the notation DDDp = SP (p) (resp. DDDt = ST (t)) for the
symbolic representation of P ′

p (resp. T ′
t) the unfolded places (resp. transitions)

from p (resp. t). A shorter notation is used for SV P (p, c): it is the DDD variable
for the component c, color class and occurrence number of it in Dom(p), of
place p.

The chosen representation only describes the presence of unfolded places or
transitions and the structure of their DDD representation, and thus avoids a
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representation of unfolded arcs, because the operations on the net, Pre and
Post matrices or guards, are represented using homomorphisms. As these ho-
momorphisms are operations suited to only particular purposes, for example
interpreting some guards or getting places pre-condition of several transitions,
they are not part of the definition of the symbolic unfolded net.

The unfolder is basically divided in three parts : the translation from a Well-
Formed Net to a symbolic unfolded net and the definition of operations on
this symbolic unfolded net, the application of the operations on the symbolic
representation, and the translation from a symbolic unfolded net to a Well-
Formed or P/T Net.

4.4 Construction of Symbolic Representation

The symbolic representation DDDp of unfolded places P ′
p from a place p is built

recursively as shown in Algorithm 1. Unfolded places are initially represented
with the DDD 1, meaning that an already non-colored place unfolded for some
color class or a colored place unfolded for no color class is unfolded as itself. Then,
for each component ci of Dom(p) to unfold, its corresponding DDD variable
SV P (p, ci) is added on top of place DDD, linked with one arc for each value in the
color class of ci to previously built place DDD. The same applies to construction
of unfolded transitions from a transition t, but each transition variable v ∈
TV ar(t) gives a corresponding DDD variable with SV T (t, v).

This algorithm defines an order in the DDD, but this order has no influence on
algorithms presented in this paper as only DDD variables are used in operations.
However, the implementation deals with this problem by enabling other orders.

Algorithm 1. Symbolic unfolded net construction

Require: P ⊂ N
Ensure: ∀p ∈ P, DDDp

for all p ∈ P do
DDDp := 1
for all c ∈ Dom(p) do

if is unfolded(c) then
DDDp :=�

x∈c SV P (p, c) x−→ DDDp

end if
end for

end for

Require: T ⊂ N
Ensure: ∀t ∈ T, DDDt

for all t ∈ T do
DDDt := 1
for all v ∈ TV ar(t) do

if is unfolded(V Dom(v)) then
DDDt :=�

x∈V Dom(v) SV T (t, v) x−→ DDDt

end if
end for

end for

4.5 Reconstruction of Explicit Representation

Construction of an explicit unfolded net from a symbolic representation is done,
as shown in Algorithm 2, by creating a place for each path in the decision
diagrams of unfolded places, and creating a transition for each path in the DDD
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of unfolded transitions. The 0 DDD means no unfolded place or transition exists,
1 means the colored (or not) place or transition is kept identical in unfolded net,
and other symbolic representations, except � which should never happen, mean
unfolded places or transitions have to be created. The algorithm presented is
valid only for full unfolding, but can be easily extended for partial unfolding.
The algorithm is the same for transitions as for places, and the same for post
arcs than for pre ones.

Algorithm 2. Concrete unfolded net construction
Require: N, the symbolic unfolded Net
Ensure: N ′ = 〈P ′, T ′, P re′, P ost′, M0′〉, the concrete unfolded net
Unfolded places

for all p ∈ P do
for all path ∈ DDDp do

P ′
p := P ′ ∪ {path}

end for
P ′ := P ′ ∪ P ′

p

end for
Unfolded initial marking

for all p ∈ P do
for all p′ ∈ P ′

p do
if M0(p)(p′) 
= 0 then

M ′
0 := M0′ ∪ {(p′, M0(p)(p′))}

end if
end for

end for

Unfolded Pre arcs
for all arc = ∈ Pre do

for all p′ ∈ P ′
p do

for all t′ ∈ T ′
t do

n := valuation(p′, t′)
if n 
= 0 then

Pre′ := Pre′ ∪ { }
end if

end for
end for

end for

For each colored arc ∈ Pre, an unfolded arc is created
if the evaluation of valuation for unfolded values of p′ and t′ is non-zero. The
same applies for colored arcs ∈ Post.

For each place p ∈ P , its initial marking has a symbolic representation
DDDmarked

p in the same way as DDDp. For each unfolded place p′ ∈ P ′
p, its

initial marking is created if a path in DDDmarked
p corresponding to p′ is found.

5 Optimizations on the Unfolded P/T Net

Optimizations applied to the symbolic unfolded net are described in the next
subsections. First of them is a simple one, the removal of false guarded tran-
sitions. Then, a more powerful but complicated one is presented, the removal
of maximal unmarked syphon. A last optimization, the removal of marked or-
phaned places, is not presented in this paper as it uses the same operations as
the maximal unmarked syphon.

Homomorphisms are not described in this paper because of lack of space, but
are available to the reader on request to the authors.
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5.1 Optimization Order

Definition 8 (Partial order over optimizations). ≺ is a partial order op-
erator over optimizations defined by oi ≺ oj iff oj applied on an unfolded net
previously optimized by oi has a different result from oj applied on an unopti-
mized unfolded net.

Guard ≺ Syphon, as maximal unmarked syphon reduces the unfolded net be-
cause some transitions can never be fired, either because one of their input places
cannot be marked or because the bindings of the transition variables lead to a
false guard.

Guard ≺ Orphan and Syphon ≺ Orphan, as removal of orphaned marked
places has no effect until some transitions have been removed.

For each optimization Opt, the best result is obtained when the length of the
path Opt0 ≺ . . . ≺ Opt is maximal. Using this constraint and this partial order,
the order for optimization application is : removal of false guarded transitions,
removal of maximal unmarked syphon and removal of orphaned marked places.

5.2 Removal of false Guarded Transitions

A first optimization is to remove, from the unfolded net, the transitions that
are false guarded. Guards are used in Well-Formed Nets to enable or disable
unfolded transitions using unfold bindings of transition variables. Each unfolded
transition has a unique set of bindings that can be used for guard evaluation to
remove bindings leading to a false guard.

A guard is an expression tree, where nodes have different arities. Nodes and
leaves do not cover all the range of syntactic tokens expressing guards, for exam-
ple x > y or x ≤ y, as a reduced set of operators described in Figure 4 is sufficient.

Name Type Arity Meaning
OR node 2 ltree ∨ rtree where ltree, rtree are subtrees
AND node 2 ltree ∧ rtree where ltree, rtree are subtrees
NOT node 1 ¬tree where tree is a subtree
EQ leaf - lvar = rvar where lvar, rvar are variables
LT leaf - lvar < rvar where lvar, rvar are variables
IN leaf - var ∈ vals where var is a variable and vals a set of values
TRUE leaf - true
FALSE leaf - false

Fig. 4. Nodes and leaves in a guard tree

Application of a guard is an evaluation of the guard expression tree using
bindings for all transition variables. The symbolic operation follows the same
algorithm with one more indirection level, by creating for each guard an ho-
momorphism to select sequences of bindings that evaluate to true. The same
homomorphism is easily extended to select only non-false guards in partial
unfolding, where some variables are not bound.
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Creation of the homomorphism follows the guard expression tree, each node
or leaf being translated to an homomorphism as described in the following para-
graphs. One node, NOT raises a problem in its definition because its meaning is to
keep all paths except selected ones. It thus translates to the difference between
two symbolic representations, the full representation of all possible bindings and
the representation of selected ones. We chose to avoid the difference operation
by pushing negation down the tree using De Morgan’s laws.

AND nodes are translated to the ◦ homomorphism operator. As the meaning
of ◦ used here is ∧, evaluation of subtrees can be done in any order. OR nodes
are as easy to translate, by the + homomorphism operator. Whereas two leaves,
TRUE and FALSE have a direct translation by Id and Constant(0), which always
returns the DDD 0, other leaves of the form vl++sl = vr++sr, vl++sl < vr++sr

and v++s ∈ C have no predefined homomorphisms or operations corresponding
and are thus translated to inductive homomorphisms.

In partial unfolding, a guard tree leaf applied on at least one unbound variable
is considered always non-false, as later binding of the variable can still lead to
true of false. The Id homomorphism is used in this case instead of real leaf
operation to keep the paths concerned with these special leaves.

5.3 Removal of Maximal Unmarked Syphon

The maximal unmarked syphon is a subset of the places of the unfolded net
that cannot structurally be marked, and thus can be safely removed. Transitions
post-condition of these places may be removed simultaneously because they can
never be fired. Depending on the colored net, this syphon can be negligible, or
almost cover the whole unfolded net.

Algorithm for P/T Nets. The algorithm for removal of the maximal un-
marked syphon is based on an iterative construction, by removing places that
can be marked from a superset S of the syphon, until stability. It is composed
of three steps, described below.

1. Initially, the considered set is composed of all the unfolded places except the
initially marked ones.
S = ∪p∈P (p′ ∈ P ′

p|M ′
0(p′) = ∅).

2. Until stability, reduction is applied on S. For each unfolded transition t′ ∈
T ′

t∈T , if all its input places are outside the syphon, PreT (t′) ∩ S = ∅, then
the transition can structurally be fired and all its output places are removed
from the syphon, S ← S \PostT (t′). If no place is removed from the syphon
in one iteration, then stability has been reached and the algorithm comes to
its ending step.
∀t ∈ T, ∀t′ ∈ T ′

t , (PreT (t′) ∩ S = ∅) =⇒ S ← S \ PostT (t′)
3. The algorithm is ended by removing the syphon from the unfolded net. All

transitions post-condition of places in syphon are removed.
∀p ∈ P, P ′

p ← P ′
t \ S

∀t ∈ T, T ′
t ← T ′

t \ {t′ ∈ T ′
t |PreT (t′) ∩ S �= ∅ ∨ PostT (t′) ∩ S �= ∅}
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Algorithm for Data Decision Diagrams. The algorithm of the removal of
maximal unmarked syphon can be easily extended to the manipulation of sets
of nodes, and sets represented by DDDs. In the following paragraphs, we use the
notation DDDi

n for the symbolic representation at step i of unfolded node n,
meaning that SP (n) = DDDi

n (for a place) in the symbolic unfolded net at this
step. The three steps of the algorithm become :

1. ∀p ∈ P, DDD0
p ← DDDp \ M ′

0(p)
2. until stability :

∀p∈ P, DDDi
p ←DDDi−1

p \∪t∈T HPostT (DDDt\∪p′∈P HPostP (DDDi−1
p′ ))

3. ∀p ∈ P, DDDn
p ← DDDp \ DDDn−1

p

∀t ∈ T, DDDn
t ← DDDt \ ∪p∈P (HPreP (DDDn−1

p ) ∪ HPostp(DDDn−1
p ))

HPreP , HPreT , HPostP and HPostT are homomorphisms defined to apply
respectively PreP , PreT , PostP and PostT on sets of places or transitions. These
homomorphisms can be divided in two groups : HPreP , HPostP and HPreT ,
HPostT , based on their input and output types, these group are described in
the following paragraphs.

To ease reading of this paragraph, we take the example of HPreP , but the
same applies for the four homomorphisms. HPreP applies on all unfolded places
P ′ of the net. It is defined using sub-homomorphisms for each unfolded place
set P ′

p|p ∈ P by the homomorphism HPreP
p , which returns the set of unfolded

transitions pre-condition of places unfolded from p. If not applied on places in
P ′

p, it returns 0. HPreP
p is itself divided into sub-homomorphisms for each arc

a from a transition t to p, using a HPreP
a homomorphism. As the valuation of

an arc is a sum of terms, valuation =
∑

i vi, the latter homomorphism can be
cut into smaller ones noted HPreP

v , considering each valuation term as an arc.
Operation for combination of sub-homomorphism is either ◦ or ∪, depending on
the searched result.

HPreP = ∪p∈P ∪t∈T |Post[t,p] �=∅ ∪v∈Post[t,p]HPreP
v is the homomorphism re-

turning the set of unfolded transitions pre-condition of a set of unfolded places.
If Post[t, p] = ∅, the unfolded arc does not exist and no set is returned, using
the DDD 0, implicitly represented in the ∪ operators.

Removal of Initially Marked Places. For each colored place p, a DDD
representing only its marked unfolded places DDDmarked

p can be built, using
the same symbolic representation as DDDp. The operation to remove marked
unfolded places is DDD0

p = DDDp \ DDDmarked
p .

A colored mark is a tuple, mark(p) = 〈c1, . . . , cn〉, with one ci value for each
component of Dom(p). In partial unfolding, if ci is of a non unfolded color class
Cj , it is not used in the symbolic representation of unfolded places and thus not
used in the marking representation.

For a place where no color class has to be unfolded, the unfolded marking is
0 for no marking, 1 for a marking.
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HPreP
v and HPostP

v Homomorphisms. A colored arc is translated to an
homomorphism HPostPv if applied from DDDi

p to a subset of DDDt, to get the
transitions post-condition of places in DDDi

p. Almost the same homomorphism
HPreP

v is created for the reverse arc, to get transitions pre-condition of places,
and only the small difference with HPostPv is given.

These two operations are a composition of six homomorphisms, each one being
a step in the transformation. Some steps can be grouped to improve efficiency
by reducing the number of operations, but these optimizations are not presented
here. The steps can be divided into two main groups : the selection of places
that are valid inputs of the valuation (1, 2 ) and the conversion of these places
to the symbolic representation of output transitions (3, 4, 5, 6 ).

Each step is itself composed of several homomorphisms, each one defined to
be applied for only one color class, not the whole domain. The composition for
several color classes is : HPreP

v = ◦term∈vHPreP
term. We consider a colored arc

from transition t to place p (PreP
v ), or from place p to transition t (PostPv ),

valued with term term.

Select valid places for valuation constants. If Dom(p) = c0 × ... × cn, for each
vi of term = 〈v0, . . . , vn〉, if ci is an unfolded color class and vi is a constant,
then the value of vi is compared to the unfold values of P ′

p for component ci,
assignment values of SV P (p, ci) DDD variable, to keep only the unfolded places
matching the constant.

DDD variables involved in this step are useless in symbolic representation
after the selection, because their values have no relation with values of valuation
variables of t, and are thus removed.

Select places consistent with valuation variables appearing several times. A single
variable can be referenced several times in one term. For each couple ci, cj ∈
Dom(p) where vi = var++si and vj = var++sj refer the same unfolded valuation
variable var, only the unfolded places where SV P (p, ci) has the same value as
SV P (p, cj) shifted with si − sj are kept in symbolic representation.

As values of SV P (p, ci) and SV P (p, cj) are linked, only one occurrence is
necessary for the next steps, the other is removed.

Remove successor ranks. Successor ranks have been used in previous step to
check consistency, but valuation variables do not use them. As each variable left
in symbolic representation corresponds to a component vi = var++si of the term,
an homomorphism transforms each value of SV P (p, ci) to its si predecessor for
the HPostPterm version, and to its si successor for the HPreP

term one, to keep
only the value without its successor rank.

Transform place DDD to transition DDD. In the previous steps, we considered
the symbolic representation of DDDp. From now one, we consider the one of
DDDt. The transformation begins in this step, by renaming for each remaining
vi = var the variable SV P (p, ci) to SV T (t, var).



352 F. Kordon, A. Linard, and E. Paviot-Adet

Reorder DDD variables to fit transition DDD order. All transition variables in
the valuation are in the symbolic representation, but their order differs of the or-
der of transition variables in symbolic representation of the unfolded transitions.
A reordering is thus done in this step to fit the order of the transition.

Complete transition DDD. For each variable v ∈ TV ar(t)|V Dom(v) is unfolded,

missing in symbolic representation, SV T (t, v)
x∈V Dom(v)−−−−−−−−→ 1 is added in its right

place in the symbolic representation.

HPreT
v and HPostT

v Homomorphisms. A colored arc is translated to an
homomorphism HPostTv if applied from DDDt to a subset of DDDi

p, to get
the places post-condition of transitions in DDDt. Almost the same homomor-
phism HPreT

v is created for the reverse arc, to get places pre-condition of tran-
sitions.

As for HPreP
v and HPostPv , HPostTv is a composition of four steps and

divided in subhomomophisms for each term of v. We consider a colored arc from
transition t to place p (PostTv ), or from place p to transition t (PreT

v ), valued
with term term.

Copy transition DDD variables to their bound place DDD variable. For each un-
folded transition variable var ∈ TV ar(t)|V Dom(var) is unfolded, if Dom(p) =
c0×. . .×cn, and term = 〈v0, . . . , vn〉, for each vi ∈ term, if V Dom(var) is ci then
the DDD values for SV T (t, var) are copied to the DDD variable SV P (p, ci).

Remove unused DDD variables. All valuation variables represented in DDD
have been copied, if used in the term, to place DDD variables, and are thus
useless. This step removes them from symbolic representation. For each var ∈
TV ar(t)|V Dom(var) is unfolded, SV T (t, var) is removed from DDD.

Add successor ranks. Successor ranks have not been used in previous steps.
As each variable in symbolic representation corresponds to a component vi =
var++si of the term, an homomorphism transforms each value of SV P (p, ci)
to its si predecessor for the HPreT

term version, and to its si successor for the
HPostTterm one.

Insert constants of valuation. As valuation can contain constants, new DDD
variables are created to insert the constants in the symbolic representation. For
each constant vi in the term, SV P (p, ci)

vi−→ is inserted in its right place.

6 Experimentation and Results

Implementation. Optimized unfolder has been implemented as a library and
an executable built on top of this library. Unfolded net follows a pipe of opti-
mizations, like those seen in sections 5.2 and 5.3. The symbolic to explicit net
transformation presented in section 4.5 is also a component of this pipe.
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Experimentation. We selected several models to validate our strategy:

– PolyORB : it comes from a cooperation with Telecom Paris to build Poly-
ORB, a formally verified Middleware [7]. In our test, the model is parame-
terized according to the number of threads that are allocated in the system.

– Peterson : it models the Peterson’s mutual exclusion algorithm for N pro-
cesses [10]. This model does not include any redundant information to test
processes level. This fact explains the high number of transitions. In our test,
the model is parameterized according to the number of processes.

– Train : It comes from a joint studies on the San Francisco area BART case
study, that was presented in [6]. This model is not parametrized.

Model Initial Guards Syphon Orphans Optimized
Places Transitions % P % T % P % T % P % T Time Memory Places Transitions

PolyORB t20 4,964 3,392,800 0 100 0 0 0 0 < 1 11 4,964 3,392,040
PolyORB t40 9,344 6,786,800 0 100 0 0 0 0 < 1 20 9,344 6,784,860
PolyORB t60 13,724 10,182,400 0 100 0 0 0 0 1 29 13,724 10,178,480
PolyORB t80 18,104 13,579,600 0 100 0 0 0 0 1 41 18,104 13,572,900
Peterson 05 1,150 58,850 0 55 100 45 ε 0 < 1 10 470 7,810
Peterson 10 9,100 1,835,400 0 59 100 41 ε 0 3 73 3,890 313,220
Peterson 15 30,600 13,838,400 0 61 100 39 ε 0 10 194 13,260 2,576,730
Train 10,620 1.4072e+09 0 61 99 39 1 0 5 111 343 202

Fig. 5. Execution results from our benchmark

Figure 5 summarizes the results we got on a 3.6 GHz Pentium-4 CPU with
2 GBytes of RAM. We provide the maximum number of places and transitions
(columns Initial Places and Initial Transitions), the final number of places and
transitions after optimizations (columns Optimized Places and Optimized Tran-
sitions). The explicit unfolded net is not generated, as for all examples but Train
execution time would be hours or days. We also measure the execution time (in
seconds) and the maximum amount of memory required to process the unfold-
ing (in Mbytes). We also provide the ratio of deleted places and transitions for
every listed optimizations (for example, 100% of deleted transition in one column
means that all suppressed transitions are detected by this optimization).

Our first test (PolyORB) shows the capacity of our approach to take care of
numerous objects in a very short time. This Petri net is very symmetric (all
threads in the system can exchange their role) and that explains the very poor
performances of the implemented optimizations (only the guard optimization is
activated for a very small number of transitions). These symmetries also explain
the very low amount of memory required to store that many Petri net objects
(this is a typical advantage of decision diagram based representations).

Our second model (Peterson) only has two colored places (one for processes,
another one for the level variables that store the last process to enter in each
level). States of the processes are modelled as a class. Therefore, all classes of the
domain place depicting the processes are not always useful (e.g. used to scan all
processes), leading to never marked places in the unfolded net. For that types of
specifications, optimization factor is excellent since up to 80% of dead transitions
are eliminated.
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Our last model (Train) provides spectacular performances on the optimiza-
tion rate (99,99999985% of transitions as well as 99,995% of places are deleted).
This is due to the presence of < and > in transition guards as well as the use of
a modeling technique to express discretized non linear function (e.g. the braking
distance according to a vehicle speed). A function y = f(x1, ..., xN ) is modeled
with a place having a N +1 product color class. This very large product, as well
as that color domains usually are large, generates numerous P/T corresponding
places for which only a few are marked (the initial marking only has a few of
the possible values). As shown here, the corresponding P/T net model, before
optimization, contains billions of places and transitions that do not remain after
optimization.

The removal of orphaned marked places has poor results. It only removes
a few places in the Peterson and Train models, and none in PolyORB. This
optimization is only intended to clean the unfolded net after removal of the
maximal unmarked syphon, and to inform the modeller about unused marked
places, as these places might be a modelling error.

Comparison with Maria. We now compare our work to the unfolder included
in Maria [9]. It is based on different principles : unfolding is viewed as related to
the colored transition enabling test. Compact structures as BDDs or DDDs are
not used : a unique explicit colored marking is built using the following rules:

– a place color is or is not in the marking, no cardinality is taken into account,
– all places colors in the initial marking are in the unique marking,
– if a transition is enabled with colors in the unique marking (here again,

cardinalities are not taken into account), then all post-condition places colors
are added to the unique marking.

Place colors in the unique marking are translated into ordinary places and
corresponding transitions and arcs are computed. It can easily be shown that
place colors not translated into ordinary places corresponds to our maximal
unmarked syphon.

Performance differences between our symbolic unfolder and Maria have sev-
eral explanations. Firstly, colored transition enabling test is more efficient than
our symbolic manipulations : the latter one uses heavy DDD variable reorder-
ing. Secondly, our unfolder can use a lot of memory for some models, whereas
Maria always keeps a very low memory usage, but maria is not able to ex-
tract information from huge optimized unfolded nets, like PolyORB, because
Maria’s strategy, in that case, leads to and explicit representation of the un-
folded net.

The main difference between our unfolder and Maria is a consequence of the
different chosen approaches : symbolic for our tool and explicit for maria. As
expected, explicit approach has better results on small unfolded nets. For the
Train model, Maria ends its execution after 20 seconds using less than 1 MBytes.
This is equivalent in time (since Maria generates the output, which takes time)
and much lower from the memory use than our symbolic approach. However,
for the other examples, whereas no other operation can be done until the full
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unfolded net is generated for Maria, which can take hours, our symbolic unfolded
net enables some operations without generation of its explicit representation.
These new operations are to be defined in the future.

7 Conclusion

To complete some structural analysis of colored Petri nets, it is important to
back-track to equivalent P/T nets and use structural techniques that are not yet
available for colored Petri nets. This is important, especially when dealing with
very large models deduced from higher specification languages. Our experiments
show that it really supports very large unfolded models.

The technique presented in this paper relies on data decision diagram for a
very compact internal representation. This is an original use of such techniques
in a new application domain. It provides good perspectives in the handling of
large system specifications.

Another advantage of our symbolic unfolding technique is that it is suitable
for partial unfolding of a subset of the color domains. This is of interest to discard
some useless color domains or increase the specification symmetry for analysis
purpose. So far, no unfolder from High Level Petri Nets to P/T nets offers this
possibility.

The presented technique is implemented and already available in CPN-AMI
3.0 as a beta version tool.
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