
Model engineering on Petri nets

for ISO/IEC 15909-2:

API Framework for Petri Net types metamodels

Lom Hillah, Fabrice Kordon (LIP6, Univ. P. & M. Curie),
{lom-messan.hillah,fabrice.kordon}@lip6.fr

Laure Petrucci (LIPN, Univ. Paris-XIII),
laure.petrucci@lipn.univ-paris13.fr

Nicolas Trèves (Cedric-CNAM), treves@cnam.fr

Abstract

ISO/IEC 15909-2 International Standard defines a universal XML-based transfer syntax for

Petri nets. The main objective of this exchange format, namely Petri Net Markup Language

(PNML), is to enable compatibility and interoperability among heterogeneous Petri net tools,

while keeping expressiveness and extensibility. Hence, it shall support different types of Petri

nets and be extensible to allow for future types. To make it applicable and integrable at low cost

to existing tools, a software framework is proposed to the Petri net community. This framework

enables fast and cost-effective tools adaptation to PNML use by bringing forth model engin-

eering techniques through model transformation, backed on OMG’s Model-Driven Architecture

principles. This paper shows that the proposed approach is concerned for compliance with the

standard, enhancing compatibility between tools. It is realistic and pragmatic. It copes with ex-

tensibility issues by allowing fast re-engineering, thanks to model-driven development approach

and code generation.

Keywords: Petri nets, PNML, model-driven development, metamodeling, model transforma-

tion, code generation.

1 Introduction

Universal transfer syntax for Petri net tools. The standardisation process of ISO/IEC 15909

part 2 [8], aims at defining a universal transfer syntax for Petri nets. This transfer syntax, namely

Petri Net Markup Language (PNML) [19], is intended to become a universal interchange format
among Petri net tools. The need for this exchange format has long been expressed within the Petri

net community, as discussed in [2]. The proposal made in [2] is now being achieved through the
international standardisation process.

The ISO/IEC 15909 part 1 [6] is already an International Standard. It defines Petri nets through

a mathematical semantic model, an abstract mathematical syntax for annotations and a graphical
notation. Its purpose is to set reference definitions for Petri nets that would be acknowledged

unambiguously by systems designers, organisations and Petri net tools vendors, and users working

on systems and applications specifications, validation and simulation involving the use of Petri
nets.

The ISO/IEC 15909 part 2 is in Working Draft state. One of the main challenges of this future
standard is its applicability and tooling with reference implementations that will spread its use.

In parallel to part 2, part 3 of the standard is being started. It focuses on modularity and Petri

net extensions (e.g. time).
Part 2 is therefore today the part of the standard where the most active work is expected. PNML

relies on:

{lom-messan.hillah, fabrice.kordon}@lip6.fr
laure.petrucci@lipn.univ-paris13.fr
treves@cnam.fr

• the PNML Core Model, a Petri Net metamodel (represented as a UML class diagram). Gen-

erally speaking, a metamodel is a business-concern specification of a particular concept at
a high level of abstraction, regardless of technological implementation choices. The Core

metamodel consists of a graph structure compatible with any kind of Petri net. It sets the
basis upon which to build concrete Petri nets types.

• concrete Petri nets types metamodels that are built from the Core metamodel. They extend

and enrich the Core metamodel. Three main types have been defined so far by the Standard:

P/T Systems [6], Structured Class Nets [7] and High Level Nets [6].

• a Petri Net Type Definition Interface (PNTDI), which is the RELAX NG [3] based mechanism
(grammar) to define the syntax format for any type of Petri Net.

The PNML syntax has been defined in terms of RELAX NG [3] grammar, which is an XML techno-

logy, to enable the translation of a given Petri net into an XML representation. RELAX NG is being

standardised as ISO/IEC 19757-2. Unlike XML Schema [16], RELAX NG technology is easier to
handle and more flexible to use. So far, it is a good candidate to drive PNML syntax rules. How-

ever, it does not capture all high level semantic subtilities or constraints that are expressed on Petri

nets, such as not connecting two nodes of the same kind in a P/T System (e.g., two places).
To be useful, an implementation of these concepts is required with a particular care w.r.t. three

types of versatility induced by:

• the variety of Petri net types that will be considered in part 3 of the standard. This definition

process has already started with the three main types defined in parts 1 and 2, as stated
above.

• the numerous variants within each Petri net type that may be considered to suit particular

modelling needs, such as P/T Systems with capacities, Timed nets with inhibitor arcs, etc.

• tools that are usually based on a Petri net type on which specific information may be plugged
to enable the use of tool-specific features (e.g. reference to source code).

Hence, to make this Standard applicable and to cope with compatibility and extensibity require-
ments that are raised by its specification, this proposal is based on model engineering techniques,

based on OMG’s Model Driven Architecture (MDA) [11] initiative. It aims at developing a software

framework, which is a toolbox, offering standard APIs to support efficient Petri net tools interoper-

ability by empowering them with automated model transformation techniques.

The incentives for this approach. A software framework is proposed to tools developers to sup-
port Petri net tools interoperability. It is proposed along with the future ISO/IEC 15909-2 Interna-

tional Standard with the following main purposes:

• Making ISO/IEC 15909-2 International Standard applicable. Indeed, PNML transfer

format has been designed to enable easy interchange of many variants of Petri nets between
Petri net tools. Therefore, interoperability will be made possible by compatibility between

the main Petri nets types and by their extensibility to other variants.

• Easing this International Standard applicability by providing tools designers with immedi-

ate low-cost integration of PNML to their applications and thus making their convergence to
this Standard homogeneously through the proposed framework. Such an approach will en-

sure tools compatibility with this Standard without having to perform the tedious and costly
work of dealing with whatever version of PNML. In fact, designing a program to load/save

Petri net models according to the Standard can be an error-prone task and may lead to com-

pliance problems.

• Providing tools developers with standard APIs to manipulate Petri net models. These APIs
are automatically generated from the corresponding Petri net type metamodel. They also

have to be multi-platform.

• Enabling Petri nets tools designers to add their own extensions to the main Petri nets

types defined by this Standard while keeping some level of conformance. This is achieved
by providing tools designers with guidelines to make these extensions. Consequently, the

generated APIs will adapt to these extensions.

• Eventually as a consequence of the statements above, facilitating the Standard use in the
academic and industrial worlds through its integration into existing or newly implemented

Petri net tools. Systems designers and Petri net tools users are clearly targeted by this work.

This Standard and the accompanying framework set a basis for exchanging Petri nets and can
be envisoned to be also integrated into applications that are designed following OMG’s MDA

principles.

The proposed object-oriented framework has been built by means of model engineering tech-

niques, thanks to OMG’s Model Driven Architecture (MDA) guidelines [11] and related technolo-
gies such as Meta Object Facility (MOF) [12] and its implementation through Eclipse Modelling

Framework’s Ecore [5] metamodelling language.

It is a toolbox that proposes model transformation chains to tools developers. One transforma-
tion chain starts with a conversion from a proprietary representation-based Petri net model into the

framework object-oriented one and then finally into PNML. The other starts from a PNML model
towards a proprietary representation-based Petri net model.

In the following, after having recalled the principles of model engineering and model transform-

ation techniques which sets our work on PNML w.r.t. MDA initiative in section 2, we describe
the methodology to build the standard APIs from each of the main Petri net types metamodels in

section 3. Then we step through the code generation process implementing the proposed solution

with Java programming language to produce the APIs in section 4. Afterwards, an example of the
APIs use in the context of a specific Petri net modelling environment such as CPN-AMI [1] is shown

in section 5. This step helps taking a tool developer point of view, regarding the API use, in order
to estimate the work required from him/her. Finally, we provide in section 6 the main guidelines

to build extensions to the Petri net types metamodels.

2 Context

The Petri Net Markup Language (PNML) is under standardisation process as ISO/IEC 15909 part

2. It aims to be an XML-based standard interchange format for Petri nets in order to provide

interoperability between various Petri net tools. Since ISO/IEC 15909 part 3 will introduce more
Petri net types, PNML should also allow for extensibility and compatibility. So, PNML should have

the following capabilities:

Compatibility This PNML standard shall allow for interoperability, and be compatible with all

types of Petri nets, both well-known and future ones that will be defined by the Standard.

Extensibility It shall be versatile and extensible, so as to include other variants of Petri nets de-

veloped in the future.

Applicability It must allow engineers to develop their Petri nets tools interfaces using the main
high-level programming languages, e.g. Java, C++, Ada.

Compatibility is enforced by using a de facto standard: XML.

To enforce extensibility, we propose to systematically use a metamodelling approach starting
concretely from the P/T nets metamodel which is based on the Core metamodel. Then, we provide

a methodological approach to define extensions of the Core metamodel to represent higher level

types of Petri nets (such as P/T Systems with inhibitor arcs, capacity places, low-level priorities,
etc.). Such an approach takes place within the context of MDA [11].

To make the standard applicable, we propose a software framework, designed using MDA’s

model-driven development approach, putting into work model transformation techniques. It provides
tools designers with standard APIs to manipulate Petri net models. These APIs are automatically

generated in Java from the corresponding metamodel.
We now introduce model-driven development and model transformation principles.

2.1 Model-driven development and model transformation

In 2001, the OMG introduced MDA [11] that promotes system development with models as first-
class artifacts. MDA introduces several successive models:

PIM (Platform Independent Model) Models specification at this level is regardless of any partic-
ular platform technological requirements. E.g., when we specify what a Petri net is, concep-

tually speaking, with nodes and connectors and labels on these objects, we do not care about

the programming language that is going to be used to implement these concepts.

PSM (Platform Specific Model) Models specification takes into account a given platform spe-

cificities, allowing for parameterisation in order to facilitate models transformation into gen-
erated code. For instance, a banking application PIM could be specified with UML, then

transformed into a PSM designed with UML profiles for EJB, thus targeting EJB technology.

To cope with transformation from one model to another, model engineering techniques propose

a set of solutions that are being studied and normalised by the OMG.

Model engineering techniques are concerned with models transformations. These techniques

require the definition of metamodels and sets of rules to perform a transformation from a source
metamodel to a target metamodel. Such rules define the metamodel mappings. Then, any model

compliant with the source metamodel (i.e. formalism) can be processed by a given set of rules,
thus rigorously defining a transformation towards the target model. Consequently,

• PIMs can be transformed into other PIMs taking into account specific business concerns for

a particular domain. E.g., how could we transform a Structured Class Net PIM into a P/T
System PIM?

• PIMs can be transformed into PSMs, taking into account platform specific concerns. E.g.,
in our approach, we use Eclipse Modelling Framework [5] (EMF) to transform the Petri net

types PIMs into PSMs targeting EMF Java-based platform.

• PSMs can be transformed into PSMs, taking into account other platforms specificities. E.g.,

how could we transform the EMF-based Petri net types PSMs into EJB-based PSMs?

• PSMs can be transformed into PIMs. E.g, abstracting business concerns from an application.

• PSMs can be transformed into source code. E.g., generating Java code from a Petri net type

PSM using EMF.

In practice, models transformations are not easy to perform. The main problems deal with
semantics. Some kinds of transformations are hardly mature (e.g., PIM to PSM, PSM to PSM)

while others are at the prospective level (e.g., PSM to PIM). MDA philosophy aims at portability,
interoperability and reusability through architectural separation of concerns.

Figure 1 gives an overview of model transformation principles. Generally speaking, given a

source metamodel and a target metamodel, transformation rules could be input to an engine, so

as to perform transformation on a given source model in order to obtain the target model. The
transformation rules can be directly expressed as programs or be driven by metamodels.

Industrial practitioners acknowledge the advantages of MDA-based development techniques
for designing complex systems. Separation between domain and platform specific issues, namely

PIM and PSM, allow a more precise approach to the viewpoints of the system under design. The

framework provided by the OMG, MOF [12], includes two viewpoints :

Figure 1: Simple overview of model transformation

1. the modelling viewpoint : it deals with the meta levels and hence provides model information

for a particular field. For example, in this paper, a basic core metamodel for Petri Nets is
specified, according to the ISO/IEC 15909-2 Standard. Then we provide specific extensions

to this metamodel to allow for its versatility, so as to define particular Petri Net types, such

as P/T Nets or Structured Class Nets.

2. the data viewpoint : the implementation level, from which APIs for different programming

languages can be developed to meet specific requirements for the engineers’ tools.

Hence, MOF aims at extensibility by providing a framework for representing any kind of metadata.

The classical four-layer architecture describing the MOF concept is of interest. Here, we consider
the two inner layers, metamodel layer (M2) and model layer (M1).

2.2 Metamodel specification viewpoints

Experiences such as the metamodelling of UML revealed that there are three main views, each

corresponding to orthogonal goals (figure 2):

1. abstraction: it emphasises reusability and any type of extensibility for the specified metamodel.
However, due to a high level of abstraction, it is difficult to express precise semantics in the

metamodel. So, implementation is heavy and strongly reduces applicability.

This view has been experimented with UML and leads to dramatic complexity when enabling
the respect of constraints by means of OCL [14] assertions. This approach is difficult to

maintain.

2. exchange: its purpose is to allow metamodel exchange for technical discussions between

system designers.

3. productivity: we emphasise the structuring of the metamodel to set constraints without addi-
tional OCL assertions Then, it is possible to constrain extensibility to appropriate directions

(such as avoiding to connect two places together). This view guarantees a certain level of

compliance with the core metamodel. A customisation process is easier to define.

APIs generated with such an approach are generally more accurate in terms of usability by

programmers.

As shown on figure 2, we mainly target the productivity viewpoint, while remaining open to

reusability and extensibility for the Petri nets types.
The metamodels sketched in the current draft version of ISO/IEC-15909 part 2 is specified at

a very high level of abstraction. Since: 1) extensibility should be constrained in order to preserve
the Petri net semantics, 2) APIs should be usable, we propose in the metamodels design to put

emphasis on the third axis, while remaining compliant with the Standard ones without any loss of

relevant information. This approach is described in section 3.

Abstraction (Reusability)

Exchange
Productivity (API)

Figure 2: Metamodelling viewpoints

3 Methodology

In the following sections, the production chain for the API framework is detailed. Then main Petri

net types metamodels are introduced and their designing process explained. In the following the

ISO/IEC 15909 part 2 Standard will be refered to as the Standard.

3.1 Overview

The API framework has been designed following a three-level structuring approach:

1. First of all, a Petri Net Core Metamodel (PNCM) has been created. It is based on PNML Core

Model defined by this Standard. This metamodel represents the modelling process starting

point. It means that from the PNCM, a hierarchical classification allows for structuring the
main Petri Net types models defined by the Standard and through its future versions. Each

main Petri Net type model represents a significant Petri net family (e.g., P/T Systems, High-

Level Petri Nets, etc.) which could contain many variants (e.g., P/T Systems with capacities,
Timed Petri nets with priorities, etc.), thus meeting the extensibility goal. From the Standard

point of view, the classification approach roughly corresponds to the relationship between the

Petri Net type (meta)models packages, symbolically represented by the UML merge concept.

2. From a given Petri Net type metamodel (see Figure 3), a tailored API is automatically gen-

erated to manipulate models structured by the given metamodel specification. Another pro-

gramming interface is generated to import/export the models from/into PNML documents,
according to the specified Petri Net type metamodel and its variants.

3. To start model manipulation (i.e., creation, modification, navigation to fetch information)
and having them eventually transformed into PNML or into a tool internal Petri net rep-

resentation, a client program is needed. Tools developers write this client to perform the
mapping between their own tool internal representation and the information retrieved or

injected into the models. At this stage, the only requirement from tools developers is to know

the specified Petri Net type metamodel elements and their structuring relationships, in order
to use the corresponding API to create models and fetch information.

Figure 3 is a diagram illustrating the three-level approach described above.

In the following, the main Petri net types metamodels defined in this Standard will be intro-

duced, along with their designing process.

3.2 The Core metamodel

The Standard Core Model [8] specifies the general concepts composing a Petri net and their rela-

tionships. This point of view is of course very conceptual and at a high level of abstraction. When

implementing this model by means of Eclipse Modeling Framework’s Ecore language, we aim at a
more specific productivity-oriented use. Therefore the Standard Core Model is refined.

Consequently, some general concepts are directly implemented and some are not. Yet, the

hierarchical approach is preserved for all main Petri net types.

Figure 3: Overview of the production chain

Figure 4: Overview of the implemented Core metamodel.

3.2.1 Providing a starting package with abstraction viewpoint

The basic Core Model package is designed with abstract classes for most parts, so as to provide
a strong basis for future extensions. As a matter of fact, a Petri net model cannot be of any

particular Petri net type (e.g., P/T Systems) by only using this Core Model. Instead, it would be

instantiated from well identified Petri net types packages, such as P/T Systems or Structured Class
Nets, all of which implement the UML merge concept [13] (used in the Standard) by means of

the EMF’s import capability associated with inheritance mechanism, since EMF does not natively
provide merge. Therefore, the inheritance relationship between these concrete packages and the

Core Model is possible. In this case, import and inheritance replace merge, which is used in the

Standard.
In Figure 4, which is a UML diagram, abstract classes are in italic letters. This convention will

be kept throughout this document for all other figures.

3.2.2 Keeping minimum transversal information

In the implemented Core Model, only the minimum subset of transversal information in all Petri
net types is kept. Consequently, there is no Place or Transition concept anymore. The Node concept

suffices. If Place or Transition was kept in the PNCM, the inheritance relationship from it to a fur-
ther Petri net type package would be confusing, regarding the Node concept. For instance, consider

that in P/T net type package there are PTPlace, PTTransition and PTNode specializing Place, Trans-

ition and Node, respectively. Then it is natural to say that PTPlace and PTTransition are PTNode,
and PTNode is a Node. But what about saying that PTPlace is also a Place and PTTransition is a

Transition ? Conceptually speaking, multiple inheritance is allowed, but in this case, it is confusing

for refinement and implementation purposes. Since Place and Transition in the Core Model are
Nodes and do not contain any relevant information at that stage, they are simply removed. But

the Arc concept is kept in the Core Model since source and target associations are relevant for the
Node concept and would not be enriched by further Petri net types, whatever the Petri Net type.

For lack of space in Figure 4, the entire Graphics metamodel is not shown. The Graphics

metaclass is a representative of the Graphics metamodel. From the Standard Core Model to this
refinement, no important requirement was lost.

3.2.3 Avoiding basic inconsistencies

As an immediate consequence, ReferencePlace and ReferenceTransition concepts are also removed

from the Core Model. They are replaced by the ReferenceNode concept. Since the UML ”Redefines”

concept is not implemented by EMF, it is redundant keeping Label information in PetriNet and
Object metaclasses in the Core Model whereas it is purposely redefined in the concrete packages.

From this point of view, it will be then impossible for a Transition to have an initial marking, since
this label is only attached to the Place metaclass in a concrete package (e.g., P/T net type). The

same consideration is applicable for a Place. Basic inconsistencies are therefore avoided.

3.2.4 How to enforce the constraints ?

Constraints are expressed in the Standard by means of the OCL language [14], but in the im-

plementation they are enforced by programming and set into a well identified package, easy to
maintain and to extend. This is because there is no mature OCL implementation technology in-

tegrated to metamodels verification process. Some interesting work by Kent University [18] was
considered but it is not yet mature and not fully documented. Another work has been introduced

at OCM’2005 by Université de Lille but the first release is not available yet. We have also stressed

in 2.2 that we follow a productivity viewpoint in developing this framework. Consequently, no
OCL assertions and checking are embbeded in its development at the current stage. A future work

will be to seek for mature constraints checking technologies at the metamodel level, either OCL or

derived work from OMG.
Constraints on datatypes particular ranges of values, such as Positive integer or Natural, are

also enforced by programming. However, constraints checking is not mandatory. Users can simply
ignore it when using the framework to save or load models.

3.3 P/T System type metamodel

In this section, the P/T Systems type metamodel is specified. In the following, P/T Systems will

be refered to as PT Net type or simply PT Net. Since it is a refinement and an implementation of
the corresponding formal type metamodel introduced in this Standard in clause 5.3, its designing

process is explained. Especially, when speaking of involved technologies such as Eclipse Modeling
Framework, model productivity is considered and consequently restrictions are set on the formal

type metamodel, without any lost of requirements.

3.3.1 PT Net metaclasses

The PT Net package is the first concrete package from which a Petri net could be instantiated. It

imports the Core Model and hence could inherit from its concepts. EMF does not provide any

explicit implementation of the UML merge concept [13], as specified in this Standard. Yet, the

import one associated with the inheritance mechanism is powerful enough to help managing the
semantics of this framework main objectives, as stated in the introductory section. Because of

the PT Net package concreteness, abstract metaclasses are seldom, as it can be seen on Figure 5.
Putting aside the Graphics package and not considering Object and Annotation metaclasses that are

kept here only for structuring purposes, the PTNode metaclass is the very new abstract metaclass

that holds the concrete concept of Name which redefines Label. The UML redefines concept is also
used in the Standard.

In this metamodel, the following concrete metaclasses are defined (See the UML diagram in

Figure 5):

• PetriNetDoc is the entry point. It represents the PNML document and may contain many P/T
net type models.

• PTNet is a P/T net type model and it has a Name which is an Annotation that redefines Label

(See Core Model). It also contains at least one Page.

• Page is an Object and contains Pages, PTArcs, PTPlaces, PTTransitions, PTRefPlaces and

PTRefTransitions. Page is a concrete concept imported ”as is” from the Core Model and
consequently does not need to be redefined, unless it brings new specific features to this Petri

net type, which is not the case up to now. A Page does not have a Name.

• PTPlace is a PTNode and thus has a Name. More specifically, it may have an initial marking,

represented by PTMarking, which is an Annotation, redefining Label.

• A PTTransition is a PTNode and thus has a Name. It has no additional feature.

• PTArc is an Arc and still connects two Nodes, as stated in the Core Model. It may have an
inscription1 which is an Annotation, redefining Label.

• Since PTNode is a Node, a PTArc can connect two PTNodes.

• PTRefPlace and PTRefTransition are ReferenceNodes and reference a PTPlace and a PTTrans-

ition respectively.

• PTArcAnnotation is a PTArc inscription. It is an Annotation, therefore it is also a Label.

3.4 Structured Class Net type metamodel

In this section, the Structured Class Net [7] (SC Net) type metamodel is specified. The designing

approach is the same as for P/T Systems. Relationships between these two metamodels are imple-

mented via the import and inheritance mechanisms. Some consideration about MathML [17] will
be introduced.

Figure 6 is a UML diagram which shows the metamodel specification for SC Nets. This metamodel
defines main metaclasses for a SC Net. These metaclasses mostly inherit from PT Net type metamodel

metaclasses. It also introduces some new metaclasses imported from the math specification metamodel

(Cf. 3.5), necessary for its completeness.

3.4.1 The SC Net metaclasses

Though no more complex than PT Net type metamodel, the SC Net type is however more special-

ised and imports the PT Net package. It means that a tool that can read or write SC Net models is
also able to read and write PT Net models. The SC Net main metaclasses and their relationships

are structured as follow:

1Actually, an inscription of value 1 is implicitly assumed if not specified.

Figure 5: Overview of the implemented PT Net type metamodel

Figure 6: Overview of the implemented SC Net metamodel

• The SCNet metaclass specialises PT Net’s PTNet class. Therefore it inherits all the features

from the PTNet metaclass. It adds its own feature that is essentially its signature. This
signature is a SCAnnotation which is an Annotation. This feature is a MMLDeclarations

metaclass which consists of a set of elements from the math specification package (See 3.5),

which shall be serialised in MathML.

• SCPage inherits all the features from PTPage. we could also directly specialise the Core Model
Page class, but it is better for compatibility and extension issues to preserve this bottom-top

inheritance mechanism. A SCPage has a signature.

• SCPlace obviously inherits from PTPlace so that it can have a name. It adds its own features

that are an initial marking (MMLMarking), a type (Type) and a domain (CompositeType),
the specifications of which come from the math package.

• SCTransition is a PTTransition and has its own features that are a guard (MMLGuard), spe-

cified in the math package, and a type or domain specified in the same package.

• SCArc is a PTArc with its own specific annotation which is defined as a MMLArcTerm in the

math package.

• SCRefPlace and SCRefTransition specialise respectively PTRefPlace and PTRefTransition from

PT Net Package. It is important to notice then that a SCRefPlace could reference a PTPlace

and so can a SCRefTransition.

From this specification, it could be deduced that the specificity of SC Net type comes from the

math specification package, which defines the metamodel of the annotations required for SC Net
type specification completeness. This metamodel, unlike the fundamental ones (i.e., Core Model,

PT Net, SC Net) will be serialised in MathML [17], instead of PNML. Thus, its structure must reflect

MathML way of specifying the contents of math expressions as Abstract Syntax Trees.

3.5 MathML annotations for SC Net type

The algebra for SC Net will be implemented in MathML, which is a W3C standard [17]. As stated

by W3C,

≪MathML is a low-level specification for describing mathematics as a basis for machine

to machine communication.≫

MathML is composed of presentation and content markups. The presentation markup is for render-
ing purposes while the content one captures mathematical semantics. They can both be combined

in the same document for the same expression. The content markup is mainly considered here. As

could be expected, contents for MathML use Abstract Syntax Trees, Prefix Notation, for structuring
math expressions.

3.5.1 Why MathML ?

MathML is used to specify the annotations for higher level Petri nets types other than PT Systems,
since it is well suited to this purpose. Those higher level Petri nets types have annotations more

complex than PT Systems’. These annotations cannot be simply expressed as for PT Systems.
They thus require some sophisticated means to specify their algebra and MathML provides such

annotations definition mechanisms.

MathML has all the features required to annotate a SC Net and provides a powerful way to
define non-MathML standard functions (e.g., the broadcast function, cf. SCNet Standard specific-

ation, [7]). Moreover it is a XML technology and a standard, and could thus be easily integrated

into PNML. PNML does not provide any implementation mechanisms for higer level Petri nets types
annotations yet. However, exchanging Petri nets remains possible. For instance, Since the SC Net

package possesses all the features defined in the PT Net package, a SCNet could be serialised as a
PTNet. The MathML annotation information would be lost in such a case. Also, if a Petri net tool

does not take into account MathML annotations for a SC Net, it can simply ignore them and fetch

the underlying PTNet instead. Using MathML is then both an interesting approach and an open
issue that the Petri net community wishes to investigate.

3.5.2 Main specification.

The main classes specified in this package and their relationships are defined as follow (See Fig-

ure 7):

• Every SC Net Signature is of MMLDeclarations type. A MMLDeclaration consists of one or

more Types (e.g., Class C in AMI-NET syntax [1]), Variables (e.g., Var y in AMI-NET syntax),
and Composite Types (e.g., Domain D in AMI-NET syntax).

• A Type is either an Interval (e.g., Class C is 1..4 in AMI-NET syntax), or an Enumeration
(e.g., Class C is [a,c,e,t] in AMI-NET syntax). Thus, Type is an abstract class.

• A MMLMarking and a MMLArcTerm are of Expression type, which is composed of a Func-
tion and Parameters. A Parameter is itself an Expression, thus allowing a recursive definition.
Such a definition aims at modelling Abstract Syntax Trees for Expressions.

• A MMLGuard of a SCTransition is of Boolean Expression type, which is composed of a

Boolean Function and Boolean Parameters. A Boolean Parameter is both a Boolean Ex-

pression and an Expression, since both boolean and non-boolean functions can be used in a

Boolean Parameter.

Figure 7: MathML annotations metamodel for SC Net

Figure 7 is an UML diagram illustrating the math annotations metamodel for SC Net.

For lack of space in this paper, detailed descriptions for Expression, Boolean Expressions, Paramet-

ers and Boolean Parameters are not included. Mappings from SC Net built-in functions to MathML

have also been defined but not included in this paper.

Synthesis

An effort was put on keeping close to the Standard metamodels: Core Model, P/T Systems and

SC Nets. The main purpose is to provide a strong basis for future extensions, so that new con-
cepts or features will be added by the import and inheritance mechanisms between packages. For

this purpose, the Core Model mainly expresses an abstraction viewpoint for Petri nets. It keeps
minimum information about the core concepts and their relationships. From a refinement and im-

plementation point of view with EMF, a balance has to be found so as not to provide redundant and

irrelevant information in the Core Model that would not be used in any other concrete package,
while keeping conformance to the Standard specification.

A modular design of the major semantic fields such as: Core Model, Graphics metamodel, PT Net

type, SC Net type and math specification, makes it easier to use, extend and maintain the packages.
The metamodel for HLPNGs could as well specialise SC Net type as this latter specialises PT Net

type. In this particular case, the modular design is of interest: the main extensions would be added
to the math specification package.

The metamodel design corresponds to MDA’s Platform Independent Model (PIM) approach [11],

since, through this section, no platform preocupation was outlined. Some restrictions were put on
the Standard metamodels, considering EMF’s PIM design approach which is based on Ecore [5].

These restrictions constitute a refinement process on the Standard metamodels. Ecore is the

metamodelling language for EMF. It is based on Essential MOF 2.0, a OMG supporting Stand-

ard [12] to help MDA taking shape. Once this stage completed, a Platform Specific Model (PSM) is
generated, and code generation follows. The PSM takes into consideration a given platform spe-

cificities, allowing for parameterisation in order to facilitate code generation. EMF provides such a
PSM for each Ecore Model.

In the following, the code generation process will be introduced.

4 Code generation

Code generation is generally one of the last steps in the model transformation process. For each

metamodel, a tailored application programming interface (API) and its implementation are gener-
ated in Java programming language.

4.1 Code generation process

Figure 8 is a Dia diagram illustrating the code generation process. As could be expected, its starts

from a Petri net Type metamodel specification at a high level of abstraction as defined in the
Standard [8] (discussed in section 3.2). Then, thanks to EMF’s Ecore language, a first model

transformation is performed through refinements which led to the metamodels shown in section 3.
According to MDA requirements, these metamodels correspond to Platform Independant Models

(PIM) [11], as stated in section 3. From each PIM, a Platform Specific Model (PSM) known in EMF

as a Genmodel is then generated. This is a second model transformation. This PSM targets EMF’s
Java-based platform.

As its MDA name suggests, platform specific concerns can be expressed on a PSM (aka Gen-

model). Consequently, specific code generation parameters can be put on a Genmodel. We can
therefore show to EMF code generation engine where to find our user-specific templates. Then

with this EMF built-in code generator, based on Java Emitter Templates (JET) [15], a tailored API

is generated.

With this tailored API, models can be created and manipulated. The tailored API also offers

repository-oriented features such as fetching all transitions, all places and all arcs from a model.
The native tailored API generated by EMF does not offer such features. These models are structured

by the given Petri net Type metamodel. With JET, export and import API to/from PNML are also
generated.

The framework APIs are structured into four virtual categories.

1. Create: the framework-based PNML models are created by the user when performing model

transformation from its tool internal representation into PNML. They are also created by the
import API (cf. Load).

2. Save: the framework-based PNML models are written into a PNML file.

3. Load: the user asks the framework to parse a PNML file and load the corresponding models.

The models are then returned to the user in the framework-based representation.

4. Fetch: after having loaded a model, the user can fetch its elements. This API is also used by

the export API (cf. Save).

4.2 Importing and exporting models.

Typically, a tool developer would provide a PNML file name to the import API and get in return
the model(s) entry point object class, namely, PetriNetDoc. From this entry point, the developer

could navigate into the model(s) to fetch information where needed, or directly use its repository-
oriented features. During the import process, a log is written to report the encountered problems.

The export process is the counterpart of the import one, with PetriNetDoc class as the input and a

PNML file as the output. An application example with CPN-AMI is detailed in section 5.

Figure 8: The code generation process.

5 Application to CPN-AMI

As mentionned in the introductory section of this paper (section 1), a tool developer point of view
is adopted in order to evaluate the low-cost integration of the Standard accompanying framework

to an existing tool. CPN-AMI [1] and his internal proprietary CAMI(X) format are taken as an
example. In this section, a proprietary tool adaptation layer is written to integrate the Standard

accompanying framework. A model transformation example is discussed using CPN-AMI [1], a

LIP6 modelling CASE environment.

5.1 CPN-AMI: a Petri net design and verification environment

CPN-AMI specifies a set of modelling formalisms for Petri nets. The team working on Distributed
and Cooperative Systems issues at LIP6 uses these formalisms for the design, verification, simula-

tion and validation of complex systems.

CPN-AMI is integrated to a widely used and robust prototyping platform named Framekit, along
with numerous tools to help handling efficiently the complex case studies. It has an intuitive graph-

ical user interface named Macao [9], which is a powerful generic graph drawing software. With
Macao, Petri net models are drawn and exchanged with the Framekit platform in a representa-

tion of the modelling formalisms that is called CAMI. CAMI is thus a formalism-based language

to manipulate Petri net nodes, their annotations and their graphical aspect between Framekit, its
integrated tools and Macao. When considering PT nets, we speak of CAMI. When considering SC

nets, we speak of CAMIX, which is an extension of CAMI to represent abstract syntax trees for

mathematical annotations on SC nets and higher level nets.

5.2 Adapting CPN-AMI to this framework : from Cami(x) to Pnml

To perform model transformation from CAMI(x) to PNML, we needed to develop the following
components on the tool designer side:

• A CAMI(X) parser. It performs the parsing of CAMI(X) instructions.

• A CAMI(X) repository. It stores the parsed models.

• A component to populate the framework-based PNML repository instances with each Petri

net model.

• A principal program which drives the above components and the nets builders provided by

the framework.

Figure 9 depicts the model transformation process. First, a Petri net model contained in a
CAMI(X) file is loaded and passed to the parser. The CAMI(X) repository is populated with the

elements parsed from the model. Then a PNML repository instance is populated with the same

model elements converted into the framework representation. Afterwards, the repository is passed
to a net builder which returns the model built according to its metamodel, for example SC Net

Type. Eventually, the model is attached to a PetriNetDoc object representing a PNML document and
the store method is called on that object to write the model(s) in a PNML document.

Figure 9: CAMI(x) to PNML model transformation process.

5.3 Adapting CPN-AMI to this framework : from Pnml to Cami(x)

To perform model transformation from PNML to CAMI(X), we had to develop the following pro-

grams:

• A program which fetches PNML models elements from PNML repository instances into CAMI(X)
repository instances. Note that it is also possible to fetch the models elements into CAMI(X)

repository instances by navigating directly within the returned models parsed from the PNML
document.

• A program which builds models in CAMI(X) representation from the CAMI(X) repository.

• A principal program which drives the above ones and calls the PNML reader which parses
PNML documents.

Figure 10 illustrates the model transformation process from PNML to CAMI(X). It follows the

reverse path of the transformation from CAMI(X) to PNML.

Figure 10: PNML to CAMI(x) model transformation process.

5.4 Time and effort required to develop the framework and the application

Writing CPN-AMI adaptation layer to integrate the framework was neither a complex task nor

a trivial one. The adaptation layer architecture had to be carefully considered. Some technical

designs and algorithms in programming tasks had also to be carefully considered, especially the
ASTs for SC nets. Model-driven development approach was used to develop the adaptation layer.

For CAMI(X) commands modeling it was very efficient so this approach is highly recommended.

Basically, a fortnight sufficed to develop this adaptation layer. Depending on how complex the
tool designer internal representation is, the integration process to the framework will cost at most

a month.

Generally speaking, the entire software development (including CPN-AMI adaptation) through
its detailed stages from specifications to the first final release lasted about three months.

Synthesis

One of the primary goals by proposing this accompanying framework is to enable tools developers

with low-cost integration of the Standard to their tools, in order to ease the Standard applicability.
The application example described in this chapter shows that this objective is realistic, affordable

and can be achieved at a reasonable cost.

The next release of CPN-AMI (version 3.0) will partially integrate a feature for the PNML export-
ing and importing capabilities that were developed in this section.

6 Guidelines to extending Petri Net Types metamodels

There are many variants of Petri nets, when considering each main Petri Net Type. The Standard

has defined some of them, namely, P/T Systems, SC Nets [7] and HLPNGs [6]. However, tools

developers may need to use these variants (e.g., P/T Systems with capacity, etc.) even if they
are not yet formally defined. Therefore, it would be interesting to have means to extend the

metamodels provided by the proposed framework in order to adapt the corresponding APIs while

keeping some level of conformance to the Standard. To meet this expectation somehow, guidelines
are provided to help tools developers to enhance the given metamodels. Following these guidelines

ensures that the generated API will adapt to the extended metamodels.
In the following sections, we are going to use extensively metamodeling and EMF’s Ecore vocab-

ulary. However, this vocabulary is simple to understand, since some examples illustrate the discus-

sion.

6.1 Extending a Petri net type metamodel by adding new metaclasses

The extension of a metamodel in this framework is guided by the following key hints:

1. An extension must be made mainly on labels. This makes sense since enrichment of known
Petri net types is done so far on labels.

2. The new metaclasses must therefore inherit from Annotation or Label or Attribute meta-

classes. By doing so, compliance is kept with the International Standard [8]. Figure 5

provides a good understanding example for P/T nets.

3. The new labels, if they are designed as new metaclasses, must preferably be added as ERefer-

ence containment attributes to the net object they belong to, or at least as simple EReference at-

tributes. This kind of relationship roughly corresponds to UML composition relationship [13].
Example: initialMarking, which is an Annotation (thus a label) is referenced from Place

metaclass as an EReference containment attribute.

4. Since an extension mechanism may involve many metaclasses but not all are to be serialised,

a naming convention called Iso must be applied on the new EReference attributes names. It
consists of naming the attributes with the pattern anyNameIsoPnmlElementName, where

1) anyName is generally the package name, e.g., pt. It could also be any relevant name

for the developer. 2) Iso is a pattern needed by code generation rules to determine PNML
elements names corresponding to the attributes, 3)PnmlElementName is the exact spelling

of the PNML element name for a given attribute.

5. Since metaclasses names have to reflect the corresponding PNML elements, the String on the

right of Iso must be the exact2 name of the corresponding PNML element.

6. New features of primitive types such as String, Integer and Enumeration will be processed. If
they are non-EReference attributes, then they will become attributes of the PNML element

corresponding to the metaclass they belong to.

Example: To add a capacity with lower and upper bounds to the Place metaclass, the following

steps are required:

1. A new metaclass named PTCapacity is created and inherits from Annotation.

2. An attribute named value of Integer type is added to PTCapacity. The value name means that
it must be serialised as <text>value string representation</text>, following the PNTD and

Convention document rules as specified in the Standard [8].a

3. the lower bound and upper bound attributes of Integer type are added too. They will be

serialised as attributes of the corresponding PNML element to PTCapacity.

4. A new EReference containment attribute is added to Place metaclass. Its type is PTCapacity
and its name is ptIsocapacity. Consequently, capacity is the mapping for the corresponding

PNML element name.

In practice, this extension example will have the following PNML representation:

<place id="plId3">

.................

<capacity lower-bound="1" upper-bound="4">

<text>3</text>

</capacity>

</place>

It should be noticed that the underscore in lower bound and upper bound has become a hyphen in

their PNML representation. This must also be considered as a naming rule for compound names.

2Despite Java naming conventions. For example, in ptIsoinitialMarking, there is no capital I for initial.

6.2 Extending a Petri net type metamodel by a new metamodel

A very good example is to consider how SC Net extends PT Net. The main issue is to implement
UML merge concept [13] as discussed in sections 3.3.1 and 3.4 via the inheritance and import

mechanisms. In addition, all the rules stated in 6.1 must be applied.

Implementation must be provided by tools designers for new features that do not have one of
the primitive types discussed in 6.1. For example, if new user-defined MathML functions are added

to the math annotations metamodel, then the code generation templates must be updated.

7 Conclusion

Thanks to the future ISO/IEC 15909-2 International Standard, the lack of a common interchange

format among Petri net tools is being adressed. This universal transfer syntax, PNML, is designed
at a high level of abstraction with interoperability and extensibility as primary goals. To ease its

applicability and low-cost integration to Petri net tools at a lower level and thus its wide use, an
API framework is proposed to accompany the Standard.

The methodology used to design the framework is based on model-driven techniques, based on

OMG’s MDA initiative. Metamodels for the main Petri net types were designed, with a structure
that enables future extensions, according to the ISO/IEC 15909-2 Standard philosophy. Model

transformations were then implemented, powered by a templates-driven code generation engine.

The model transformations chain within this framework is completely achieved when tools de-
velopers plug their tool adaptation layer into it. An application example to CPN-AMI was intro-

duced in 5.1. Actually, the proposed framework does not intend to substitute tools internal repres-

entations with its own. It serves as a mediator between tools and compliance to PNML Standard.
Its main advantage if widely used will be to make a quick convergence of Petri net tools users and

systems designers from academic and industrial worlds to the Standard compliance and facilitate
fast re-engineering on the metamodels and code re-generation.

It provides a very comprehensive and intuitive API to use. It relies on mature and multi-platform

technologies, namely Eclipse Java-based platform and Eclipse Modeling Framework, which are ac-
knowledged by the industry. Eventually, its maintenance is facilitated by model-driven develop-

ment approach.

This work will be input as a contribution to the annexes of the future ISO/IEC 15909-2 Standard.

Perspectives

So far, the API framework has been integrated into a Petri net CASE environment, namely CPN-
AMI [1]. The proposed approach should now be investigated and extended with applications to

other Petri net tool such as Great SPN [4] and CPN Tools [10]. Through many application ex-
amples, specific needs for flexibility and new functionalities will arise, thus improving the frame-

work. The applications will also help to validate this working plan.

Constraints checking on the models is not yet mandatory. A dedicated API is provided with
the proposed framework. It can be turned on/off by the user. Nevertheless, it does not mean

that a malformed model, w.r.t. its metamodel, is accepted. The constraints we are speaking of

are concerned with fundamental semantics in Petri nets, e.g., connecting two places. The current
constraints checking approach is specified by programming. Future work should seek for OCL [14]

technologies to implement these constraints at the metamodels level. Current OCL technologies
are not yet mature enough to integrate them into the framework at this early stage. However,

implementing these constraints at the metamodel level implies a debate in the Petri net community

to agree on, set and acknowledge them.

The framework has been developed with Java programming language. However, with the

templates-driven code generator, APIs could be generated in any other language. In this particular
case, the entire generated tailored APIs must be substituted with other interfaces and implement-

ation packages in the targeted language (e.g., C++ or ADA).

References

[1] The CPN-AMI Home page. http://www.lip6.fr/cpn-ami.

[2] J. Billington, S. Christensen, K. van Hee, E. Kindler, O. Kummer, L. Petrucci, R. Post, C. Stehno,

and M. Weber. The Petri Net Markup Language: Concepts, technology and tools. In Proc. 24th

Int. Conf. Application and Theory of Petri Nets (ICATPN’2003), Eindhoven, The Netherlands,

June 2003, volume 2679 of Lecture Notes in Computer Science, pages 483–505. Springer,

2003.

[3] James Clark. RELAX NG Home Page. http://www.relaxng.org/, 2003.

[4] Universita di Torino. Great SPN. http://www.di.unito.it/∼greatspn/index.html/.

[5] Eclipse Foundation. Eclipse Modeling Framework. http://www.eclipse.org/emf/.

[6] ISO/IEC. Software and Systems Engineering - High-level Petri Nets, Part 1: Concepts, Defin-
itions and Graphical Notation, International Standard ISO/IEC 15909, December 2004.

[7] ISO/IEC. Software and Systems Engineering - High-level Petri Nets, Part 1: Concepts, Defin-

itions and Graphical Notation. Proposed Draft Addendum to International Standard ISO/IEC

15909-1, June 2005.

[8] Ekkart Kindler. Software and Systems Engineering - High-level Petri Nets. Part2: Transfert
Format. Working Draft for the International Standard ISO/IEC 15909 Part 2 - Version 0.6.3,

June 2005.

[9] The Macao Home page. http://www.lip6.fr/macao/.

[10] University of Aarhus. Computer Tool for Coloured Petri Nets - CPNTool.

http://wiki.daimi.au.dk/cpntools/cpntools.wiki.

[11] OMG. MDA Guide Version 1.0.1, document no: omg/2003-06-01, 2003.

[12] OMG. MetaObjectFacility 2.0 Core Specification, document no:omg/2003-10-04. OMG, 2003.

[13] OMG. UML 2.0 Infrastructure Specification, document no:omg/03-09-15. OMG, 2003.

[14] OMG. UML 2.0 OCL Specification, document no:omg/03-10-14. OMG, 2003.

[15] Remko Popma. Introduction to JET. Azzurri Ltd.,
http://eclipse.org/emf/docs.php?doc=tutorials/jet1/jet tutorial1.html, 2005.

[16] W3C. The EXtensible Markup Language. http://www.w3.org/XML/.

[17] W3C. MathML 2.0, W3C Math Home. W3C, http://www.w3.org/Math/.

[18] Michael Wahler. Using OCL to interrogate your EMF model. IBM Zurich,
http://www.zurich.ibm.com/∼wah/doc/emf-ocl/index.html, August 2004.

[19] Michael WEBER. Petri Net Markup Language. http://www.informatik.hu-berlin.de/top/pnml/pnml.html.

http://www.lip6.fr/cpn-ami
http://www.relaxng.org/
http://www.di.unito.it/~greatspn/index.html/
http://www.eclipse.org/emf/
http://www.lip6.fr/macao/
http://wiki.daimi.au.dk/cpntools/cpntools.wiki
http://eclipse.org/emf/docs.php?doc=tutorials/jet1/jet_tutorial1.html
http://www.w3.org/XML/
http://www.w3.org/Math/
http://www.zurich.ibm.com/~wah/doc/emf-ocl/index.html
http://www.informatik.hu-berlin.de/top/pnml/pnml.html

	Introduction
	Context
	Model-driven development and model transformation
	Metamodel specification viewpoints

	Methodology
	Overview
	The Core metamodel
	Providing a starting package with abstraction viewpoint
	Keeping minimum transversal information
	Avoiding basic inconsistencies
	How to enforce the constraints ?

	P/T System type metamodel
	PT Net metaclasses

	Structured Class Net type metamodel
	The SC Net metaclasses

	MathML annotations for SC Net type
	Why MathML ?
	Main specification.

	Code generation
	Code generation process
	Importing and exporting models.

	Application to CPN-AMI
	CPN-AMI: a Petri net design and verification environment
	Adapting CPN-AMI to this framework : from Cami(x) to Pnml
	Adapting CPN-AMI to this framework : from Pnml to Cami(x)
	Time and effort required to develop the framework and the application

	Guidelines to extending Petri Net Types metamodels
	Extending a Petri net type metamodel by adding new metaclasses
	Extending a Petri net type metamodel by a new metamodel

	Conclusion

