
An Introduction to Rapid System Prototyping
Fabrice Kordon and Luqi, Fellow, IEEE

Abstract—The implementation and maintenance of industrial applications have continuously become more and more difficult. In this

context, one problem is the evaluation of complex systems. The IEEE defines Prototyping as a development approach promoting the

implementation of a pilot version of the intended product. This approach is a potential solution to the early evaluation of a system. It can

also be used to avoid the shift between the description/specification of a system and its implementation. This brief introduction to the

special section on Rapid System Prototyping illustrates a current picture of Prototyping.

Index Terms—Software engineering, prototyping, development methodology.

�

1 ABOUT THE SPECIAL SECTION

THE 11th IEEE International Workshop on Rapid System
Prototyping (RSP) presented and explored recent trends

in the rapid prototyping of Computer-Based Systems. It was
hosted by the Université Pierre & Marie Curie, in Paris, on
21-23 June, 2000.

One main characteristic of the RSP workshop series is to
bring together researchers from both the hardware and
software communities to share their experience with rapid
prototyping and related work. It is of particular interest to
see how close objectives and methodologies may be despite
disparate techniques and constraints.

We noticed with great interest that almost half of accepted
papers in 2000 were concerned with methodological aspects
of Rapid Prototyping. We think this indicates that Rapid
Prototyping is moving away from local use in research-
oriented development projects and now influences the
system life cycle in industry (software, hardware, co-design).

For RSP 2000, 36 contributions were accepted out of the
59 submitted. Some accepted papers were nominated by the
program committee as representing especially innovative
contributions and the authors were invited to extend them
for publication in IEEE Transactions on Software Engineering.
After a two-step selection process involving experts in the
field, three were selected for this special section.

2 WHY RAPID PROTOTYPING IS NEEDED

Seeing that computer-based technology is providing more
and more facilities, it is surprising to notice how sensitive
complex applications are. Languages and design techniques
are more and more polished and enhanced with new
concepts, but programs still have bugs that sometimes
generate major accidents. This problem is becoming a major
issue since programs are more commonly used in day-to-
day life.

As an example, the main functions in cheap cars are now
completely computerized and luxury cars now embed
dozens of processors on which programs must cooperate.
Functions requiring support are dedicated to comfort (such
as air-conditioning), but also to safety (such as ABS brake
systems).

The complexity of developing such systems increases in
several directions:

. the complexity of functions to be performed,

. the fact that execution tends to be distributed on
several processors, and

. the constant evolution of execution environments
(hardware + software).

Many studies have shown that the design and imple-
mentation of these complex applications tend to produce
various kinds of errors at every stage, even when the
development process is enforced by strict procedures:

. In the early parts of the development, such as
requirements and design specifications, the formula-
tion of requirements using natural languages, as well
as potential misunderstanding between users and
designers of the future system, tend to produce
errors that will have a lasting influence on reliability,
safety, and cost of the system [8].

. In later parts of the development, such as imple-
mentation and deployment, programming con-
straints may introduce alterations in the system
(even if it is well-described). Moreover, specifica-
tions may often be interpreted in various ways,
leading to so-called ”integration problems” [10].

. Maintenance is usually performed on programs.
Thus, variations in time introduce significant differ-
ences between the original specification and the
maintained application. If specifications and envir-
onmental restrictions are not maintained and vali-
dated across changes, implicit assumptions can
easily be violated, leading to costly failures such as
that of Ariane 5 [6].

The main reason for using prototypes is economic: Scale
models and prototype versions of most systems are much
less expensive to build than the final versions. Prototypes
should therefore be used to evaluate proposed systems if

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 28, NO. 9, SEPTEMBER 2002 817

. F. Kordon is with the Computer Science Department, Université Pierre &
Marie Curie, 4 place Jussieu, 75252 Paris Cedex 05, France.
E-mail: fabrice.kordon@lip6.fr.

. Luqi is with the Computer Science Department, Naval Postgraduate
School, 1 University Cir., Monterey, CA 93943-5001.
E-mail: luqi@nps.navy.mil.

For information on obtaining reprints of this article, please send e-mail to:
tse@computer.org, and reference IEEECS Log Number 116718.

0098-5589/02/$17.00 � 2002 IEEE

acceptance by the customer or the feasibility of develop-
ment is in doubt. The need for prototyping has become
more urgent as systems being developed have grown more
complex, more likely to have requirements errors, and more
expensive to implement.

3 WHAT IS RAPID PROTOTYPING

Prototyping is defined by the IEEE as: ”A type of
development in which emphasis is placed on developing
prototypes early in the development process to permit early
feedback and analysis in support of the development
process” [1]. As this section shows, this definition can be

variously instantiated.
To catch the idea of prototyping, we first have to define

what a prototype is. We then consider the relation between
the prototype and the final system. Finally, we have to
consider involved development techniques.

3.1 The Prototype

A prototype is an executable model of a system that
accurately reflects a chosen subset of its properties, such as

display formats, computed results, or response times.
Prototypes are useful for formulating and validating
requirements, resolving technical design issues, and sup-
porting computer-aided design of both software and
hardware components of proposed systems. Rapid proto-
typing refers to the capability of creating a prototype with

significantly less effort than it takes to produce an
implementation for operational use.

A prototype may not satisfy all of the constraints on the
final version of the system. For example, the prototype may
provide only a subset of all the required functions, it may be
expressed in a more powerful or more flexible language
than the final version, it may run on a machine with more

resources than the proposed target architecture, it may be
less efficient in both time and space than the final version, it
may have limited capacity, it may not include full facilities
for error checking and fault tolerance, and it may not have
the same degree of concurrency as the final version. Such
simplifications are often introduced to make the prototype

easier and faster to build. To be effective, partial prototypes
must have a clearly defined purpose that determines what
aspects of the system must be faithfully reproduced and
which ones can safely be neglected.

Prototypes facilitate the requirements phase for any type
of software if the requirements have changed from the
previous version, which is usually the case. Prototypes can

demonstrate system scenarios to the affected parties as a
way to:

. collect criticisms and feedback for updated require-
ments,

. detect deviations from users’ expectations early,

. trace the evolution of the requirements,

. improve the communication and integration of the
users and the development personnel, and

. provide early warning of mismatches between
proposed software architectures and the conceptual
structure of requirements.

3.2 Relation to the Final System

Prototypes can be developed either to be thrown away after
producing some insight or to evolve into the product
version. Each of these approaches has its benefits and
disadvantages and the most appropriate choice depends on
the context of the effort.

3.2.1 The Throw-Away Approach

The main advantage of the throw-away approach is that it
enables the use of special-purpose languages and tools,
even if they introduce limitations that would not be
acceptable in an operational environment or even if they
are not capable of addressing the entire problem. The
throw-away approach is most appropriate in the project
acquisition phase where the prototype is used to demon-
strate the feasibility of a new concept and to convince a
potential sponsor to fund a proposed development project.
In such a context, available resources are limited and the
ability to communicate the advantages of a new approach
via a very low cost demonstration can be critical for creating
a new project.

The most apparent disadvantage of a throw-away
prototype is spending implementation effort on code that
will not contribute directly to the final product. There is also
the temptation to skip or abbreviate documentation for
throw-away code. This temptation is harmful because the
lessons learned from the prototyping effort may be lost if
they are not recorded and because the lack of documenta-
tion and degradation of the initial design simplicity may
block the evolution of the prototype before it reaches a form
that captures the customer’s needs with respect to the scope
of the prototyping effort. The throw-away approach can be
a stopgap for an inadequate level of technology and is most
appropriate for rough system mock-ups used at the very
earliest stages of a project.

3.2.2 The Evolutionary Approach

The evolutionary approach produces a series of prototypes
in which the final version becomes the software product.
This approach depends on special tools and techniques
because it is usually not possible to put a prototype into
production use without significant changes to its imple-
mentation to optimize the code and to complete all of the
details. The conceptual models and designs contained in a
prototype can usually be used in the final version. Precise
specifications for the components of a prototype and clear
documentation of its design are therefore critical for
effective software prototyping, as are tools for transforming
and completing designs and implementations. The technol-
ogy needed to support this approach is beginning to
emerge.

3.3 Relation to Software Automation

To be effective, prototypes must be constructed and
modified rapidly, accurately, and cheaply. They do not
have to be efficient, complete, portable, or robust and they
do not have to use the same hardware, system software, or
implementation language as the delivered system. Software
for rapid and inexpensive construction and modification of
prototypes makes it feasible [7].

818 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 28, NO. 9, SEPTEMBER 2002

In the throw-away approach, prototypes are usually built
with specific languages for simulations. It is of interest that
SmallTalk is getting back in the picture for prototyping
since it proposes lots of predefined classes implementing
various functions and is recognized as being an easy-coding
language.

In the evolutionary approach, support for automated
program construction of systems is needed and such tools
can be very useful in this context, even if the resulting
programs are not very efficient.

4 WHAT IS PROTOTYPING NOW

For many years, prototyping was mostly reduced either to
the throw-away approach or to automatic program genera-
tion (for example, user interface builders). Companies for
which products were life-critical started to implement
prototyping tools in the 1990s (for example, in the aircraft
industry). Now, prototyping tends to be more than a simple
set of techniques available for projects. It is a development
approach based on several techniques:

. Modeling is necessary to be able to capture the
architecture and the behavior of the system to be
developed.

. Evaluation of the model can be performed through
simulation or testing; in some cases, formal techni-
ques are also applicable.

. Automated program generation from the model pro-
vides an accurate image of the system without the
variations that may be introduced during the coding
phase.

4.1 Prototyping as a Methodology

A typical prototyping-based approach is presented in Fig. 1
and shows all the potential of this type of methodology. It
first shows that both throw-away and evolutionary proto-
typing can be used at different stages in the same project.

If used, throw-away prototyping is of interest for
establishing a preliminary design and can be built using
any of the techniques mentioned in Section 3.2.1. Demon-
strations to end-users, as well as investigation on this
prototype, allows for the design of more precise require-
ments as well as the evaluation of techniques to be used in

the final system. Refinements on the throw-away prototype
mainly concern requirements.

If used, evolutionary prototyping should be centered on
a model prototype: an accurate and complete description of
the system serving as a basis for both evaluation and
program generation. Various research projects present such
an approach in software (as in [13]), hardware (as in [3]),
and hardware/software codesign (as in [2]). Other exam-
ples can be easily found.

The model prototype can be evaluated using standard
simulation techniques or, if it relies on mathematical
foundations, formal techniques such as model checking
[5]. Let us note that formal techniques provide much more
accurate information on the model than a ”traditional”
evaluation. Moreover, formal verification techniques are
now at a stage were they can be used in some industrial
projects since most of the problems mentioned in [9] may be
overcome. As an illustration, industry is already interested
in many research projects concerning the use of formal
methods for critical systems. The strength of these
techniques is to ensure that the model has specific desired
properties; the issue of appropriateness of choice of proper-
ties is best addressed by demonstrations to elicit feedback
from affected parties.

The main interest of program generation is to provide
executable programs at very low cost. Moreover, these
programs may be run in their target execution environment
for appropriate test and evaluation (e.g., for performances
constraints). Program generation usually generates a skele-
ton on which easy-to-produce pieces of code can be mapped
from ”annotation” in the model prototype. For example, the
control of distributed applications is difficult to implement
and benefits from such techniques; sequential code is
simpler to produce and can be inserted on the skeleton
according to the model annotations.

Refinements on the evolutionary prototype concern the
product itself: functions, speed, memory consumption, etc.

One can easily imagine that the model prototype does
survive the implementation phase to be reused for main-
tenance. In that case, each modification can be carefully
checked and its impact on the final system evaluated.

However, there are still many complex aspects to
consider in prototyping. Several aspects are already
addressed by (often partial) solutions:

. Reuse of software components in applications still
provides some difficulties for a prototyping-based
approach (especially when formal methods are
used) since only parts of the system are described
in the model prototype.

. The choice of an appropriate notation for the model
prototype is not easy. If UML is now a standard for
design of systems, it still cannot be considered in
many application domains (such as distributed
systems, real-time systems, etc.).

. The link between the model prototype and formal
verification techniques remains delicate. A solution
is to specify the system by means of a formal
notation, but it appears to be impracticable: This is
impossible for large systems and requires that

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 28, NO. 9, SEPTEMBER 2002 819

Fig. 1. Prototyping-based methodology.

engineers have a strong education in formal meth-
ods, which is not realistic.

. The automation of the verifications performed on the
model prototype is necessary to enable a larger use of
prototyping-based development. Whether the ver-
ification is formal or not, techniques are not easy to
manipulate and should be automated.

. Existence of user friendly tools is a prerequisite for a
larger use of prototyping based development.

4.2 Is There Still a Need for Prototyping in the
Future?

The throw-away prototyping approach has already been

used in industry for about three decades. Typically, prior to

a large project, a study is performed to evaluate the

feasibility and cost of the real system. Sometimes, the

project is canceled based on these studies.
Recently, the term RAD (Rapid Application Develop-

ment) got some popularity. However, it is more often

interpreted as ”extreme programming” since the appro-

priate environments to automate program generation are

unavailable most of the time.
However, prototyping-based methodologies do exist. It

is known that companies like Airbus Industries and Boeing

do develop embedded code using such techniques. How-

ever, no communication is made on details of the involved

techniques because this capability appears to be a key for

competition.
We think that the use of prototyping-based development

methodologies will increase in industry. We can identify

two ”point of interest” for companies:

. Point 1: Prototyping-based methodologies are of
interest because they allow us to reduce the cost and
time-to-market of a system. For companies produ-
cing complex systems (such as embedded, distrib-
uted, real-time, etc.), there is an additional reason:
The cost of highly skilled engineers increases rapidly
since there is more demand than people to fill
positions. Automated development approaches
could reduce the need for highly skilled engineers
since one of them could manage several ”standard”
engineers to operate prototyping tools.

. Point 2: For companies building critical systems, a
prototype-based approach is even more interesting
since it is more likely able to operate formal
verification techniques when required. It is now
clear that such methods are the only way to provide
extremely high levels of reliability in system design
and implementation. This is why it is recommended
by various certification standards such as DO-178B
(for avionic systems).

5 PAPERS OF THE SPECIAL SECTION

We noted with interest that the selected papers all come

from the hardware/software codesign community. This is

a perfect illustration of the common interest of software

and hardware when it comes to elaborate development

approaches.

The first paper to be selected is ”Combining a Perfor-

mance Estimation Methodology with a Hardware/Software

Codesign Flow Supporting Multiprocessor Systems” from

the TIMA Laboratory in Grenoble (France). It presents an

approach that enables exploration of a large number of

multiprocessor architecture solutions from the very start of

the design process. The presented approach successfully

combines modeling techniques, formal description techni-

ques (use of SDL [4]), and program generation (in

assembler).
The second paper to be selected, ”Virtual Benchmarking

and Model Continuity in the Rapid Prototyping Embedded

Multiprocessor Signal Processing Systems,” illustrates a

cooperation between Cadence Design Systems and the

Georgia Institute of Technology, Atlanta. This paper clearly

focuses on the methodological aspects and addresses the

integration of the product in an already existing execution

environment (software + hardware), which is one of the

problems mentioned at the end of Section 4.1.
The last paper to be selected, ”Reconfigurable Instruction

Set Processors from a Hardware/Software Perspective,”

comes from the Katholieke University of Leuven, Belgium.

It is a survey of techniques used to reconfigure the logic of

processors. The design of a program generator tool (like in

[12]) as well as the implementation of reconfigurable

runtimes or virtual machines (like in [11]) could easily

benefit from such techniques.

ACKNOWLEDGMENTS

The guest editors thank Anneliese Amschler Andrews

(former Editor-in-Chief), John Knight (Editor-in-Chief),

and the IEEE Computer Society staff for the help they

provided them to build this special section. They also thank

the reviewers of papers in this special section.

REFERENCES

[1] C.J. Booth and G.P. Kurpis, The New IEEE Standard Dictionary of
Electrical and Electronics Terms [Including Abstracts of All Current
IEEE Standards], fifth ed. New York: IEEE, 1993.

[2] W. Cesario, G. Nicolescu, L. Gauthier, D. Lyonnard, and A.
Jerraya, “Colif: A Design Representation for Application-Specific
Multiprocessor SOCs,” IEEE Design and Test of Computers, vol. 18,
no. 5, Sept./Oct. 2001.

[3] M. Dessouky, M.-M. Louërat, and J. Porte, “Layout-Oriented
Synthesis of High Performance Analog Circuits,” Proc. Design
Automation and Test in Europe Conf. (DATE ’00), pp. 53-57, 2000.

[4] J. Ellsberger, D. Hogrefe, and A. Sarma, SDL: Formal Object-
Oriented Language for Communicating Systems, second ed. Prentice
Hall, 1997.

[5] G. Holzmann, “The Spin Model Checker,” IEEE Trans. Software
Eng., vol. 23, no. 5, pp. 279-295, May 1997.

[6] J.L. Lions, “Flight 501 Failure Report by the Inquiry Board,” CNES
report, Aug. 1996, available at http://www.esa.int/htdocs/tidc/
Press/Press96/ariane5rep.html.

[7] Luqi and W. Royce, “Status Report: Computer-Aided Prototyp-
ing,” IEEE Software, vol. 9, no. 6, pp. 77-81, 1992.

[8] Luqi, “System Engineering and Computer-Aided Prototyping,”
J. Systems Integration, Special Issue on Computer Aided Prototyping,
vol. 6, no. 1, pp. 15-17, 1996.

[9] Luqi and J. Goguen, “Formal Methods: Promises and Problems,”
IEEE Software, vol. 14, no. 1, pp 75-85, Jan./Feb. 1997.

[10] Luqi, C. Chang, and H. Zhu, “Specifications in Software
Prototyping,” J. Systems and Software, vol. 42, no. 2, pp. 150-177,
Aug. 1998.

820 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 28, NO. 9, SEPTEMBER 2002

[11] I. Piumarta, B. Folliot, L. Seinturier, C. Baillarguet, and C. Khoury,
“Highly Configurable Operating Systems: The 11 Approach,”
Proc. ECOOP 2000 Workshop Object Orientation and Operating
Systems, June 2000.

[12] D. Regep and F. Kordon, “Using MetaScribe to Prototype an UML
to C++/Ada95 Code Generator,” Proc. 11th IEEE Int’l Workshop
Rapid System Prototyping, pp 128-133, June 2000.

[13] D. Regep and F. Kordon, “LfP: A Specification Language for
Rapid Prototyping of Concurrent Systems,” Proc. 12th IEEE Int’l
Workshop Rapid System Prototyping, pp. 90-96, June 2001.

[14] M. Kühl, B. Spitzer, K. Müller-Glaser, and U. Dambacher,
“Universal Object-Oriented Modeling for Rapid-Prototyping of
Embedded Electronic Systems,” Proc. 12th IEEE Int’l Workshop
Rapid System Prototyping, pp. 149-154, June 2001.

[15] B. Spitzer, M. Kühl, and K. Müller-Glaser, “A Methodology for
Architecture-Oriented Rapid Prototyping,” Proc. 12th IEEE Int’l
Workshop Rapid System Prototyping, pp. 200-205, June 2001.

[16] M. Pavesi, “Market Estimation for System Prototyping EDA
Segment,” Proc. 13th IEEE Int’l Workshop Rapid System Prototyping,
July 2002.

[17] A. Mohammad Obeid, A. Garcia Ortiz, R. Ludewig, and M.
Glesner, “Prototyping of a High Performance Generic Viterbi
Decoder,” Proc. 13th IEEE Int’l Workshop Rapid System Prototyping,
July 2002.

[18] T. Pionteck, N. Toender, L.D. Kabulepa, T. Kella, and M. Glesner,
“On the Rapid Prototyping of Equalizers for OFDM Systems,”
Proc. Int’l Workshop Rapid System Prototyping, July 2002.

[19] Y. Tanurhan, “FPGA’s Rapidly Bridging Worlds,” Keynote Speech
at Int’l Workshop Rapid System Prototyping, July 2002.

[20] M. Guler, N. Kejriwal, L. Wills, S. Clements, B. Heck, and G.
Vachtsevanos, “Rapid Prototyping of Transition Management
Code for Reconfigurable Control Systems,” Proc. 13th IEEE Int’l
Workshop Rapid System Prototyping, July 2002.

[21] C. Hinkelbein, A. Kugel, R. Maenner, and M. Müller, “Reconfi-
gurable Hardware Control Software,” Proc. 13th IEEE Int’l
Workshop Rapid System Prototyping, July 2002.

[22] M. Kühl, C. Reichmann, I. Prötel, and K.D. Müller-Glaser, “From
Object-Oriented Modeling to Code Generation for Rapid Proto-
typing of Embedded Electronic Systems,” Proc. 13th IEEE Int’l
Workshop Rapid System Prototyping, July 2002.

[23] R. Ludewig, A. Garcia Ortiz, T. Murgan, and M. Glesner, “Power
Estimation Based on Transition Activity Analysis with an
Architecture Precise Rapid Prototyping System,” Proc. 13th IEEE
Int’l Workshop Rapid System Prototyping, July 2002.

[24] R. Kress, “SoC Development Challenges,” Keynote Speech at the
13th IEEE Int’l Workshop Rapid System Prototyping, July 2002.

[25] G. Kurpis and C. Booth, The New IEEE Standard Dictionary of
Electrical and Electronic Terms. New York, 1993.

[26] R. Vonk, Prototyping—the Effective Use of CASE Technology.
Perentice Hall, 1989.

[27] OMG, “Model Driven Architecture (MDA),” Technical Report,
Document Number ormsc/2001-07-01, 2001.

Fabrice Kordon received the PhD degree in
computer science in 1992 from the University
P. & M. Curie (Paris, France) and is currently a
professor of computer science at this university
where he chairs a team involved in prototyping
techniques for distributed systems (modeling,
formal verification using Petri nets, automatic
program generation). Since 1994, his team has
distributed on Internet CPN-AMI: a Petri net-
based CASE environment dedicated to the

formal verification of distributed systems which is used for teaching
and reseach in many research institutes. He is on the program
committees of several conferences dedicated to formal methods and
software engineering. He was the general cochair for the IEEE Rapid
System Prototyping Workshop in 2000 and 2001 prior to being program
cochair in 2002.

Luqi received the PhD degree in computer
science from the University of Minnesota in
1986. Since graduation she has worked for the
Science Academy of China, the Computer
Center at the University of Minnesota, and in
industry. She is currently a professor of compu-
ter science at the US Naval Postgraduate
School, where she chairs the Software Engi-
neering Program and leads a team producing
highly automated software tools, including

CAPS (Computer-Aided Prototyping System). She has received a
Presidential Young Investigator Award from the US National Science
Foundation and the 1997 Technical Achievement Award from the IEEE
Computer Society for her research on the enabling technologies for
computer-aided prototyping of real-time systems. For three years now,
she has chaired the IEEE annual Rapid System Prototyping Workshop.
In addition to chairing or serving on the program committees of more
than 40 conferences, she is or has been an associate editor for IEEE
Expert, IEEE Software, the Journal of Systems Integration, and Design
and Process World. She is a fellow of the IEEE.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 28, NO. 9, SEPTEMBER 2002 821

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

