
A case study of Middleware to Middleware:
MOM and ORB interoperability

Jérôme Hugues, Fabrice Kordon, Laurent Pautet, and Thomas Quinot

{hugues, pautet, quinot}@enst.fr

École Nationale Supérieure des
Télécommunications

CS & Networks Department
46, rue Barrault

F-75634 Paris CEDEX 13, France

fabrice.kordon@lip6.fr

Laboratoire d’Informatique de Paris 6/SRC
Université Pierre & Marie Curie

4, place Jussieu
F-75252 Paris CEDEX 05, France

Abstract. Diversity in distributed applications leads to diversity in distribution
models, and hence in middleware. However, large systems may need different
types of middleware and interoperability between them, requiring “Middleware
to Middleware” architectures. We have introduced the schizophrenic middleware
concept as a general solution for interoperability between distribution models.
PolyORB, our implementation of a schizophrenic middleware, demonstrates full
interoperability between CORBA, SOAP, and the Ada 95 Distributed System An-
nex (DSA). In this paper, we present an assessment of the usability of our plat-
form to implement Message Oriented Middleware (MOM). We then study MOM
and ORB interoperability, from both an architectural and a functional point of
view, and finally discuss benefits provided by our architecture to implement mid-
dleware.

1 Introduction

Middleware is a commonly accepted solution to ease the development of large heteroge-
neous distributed systems. The choice of a particular middleware is a key design issue:
as there is no “one true” distribution solution, this choice is not neutral and may deeply
influence the final design and performance of an application.

There is therefore a need to rapidly tailor middleware to fit an application’s require-
ment of a specific distribution model. A distribution model is defined by the combina-
tion of distribution mechanisms made available to the application. Common examples
of such mechanisms are Remote Procedure Call (RPC), Distributed Object, Distributed
Shared Memory (DSM), and Message Passing.

A solution is to reuse or adapt existing software components provided by generic
middleware and instantiate them according to a distribution model to create a person-
ality. However, the cost of this personalization may be important, thus reducing the
benefits of this approach.

2

Diversity among existing middleware also introduces a new layer of heterogeneity
which may lead to new incompatibilities, impeding the reuse of legacy applications, or
interaction between different applications. Designing middleware to be as independant
as possible from the underlying distribution model, and to satisfy interoperability needs
of interconnected application has become a major issue: Middleware to Middleware
(M2M) [Bak01].

We have introduced the schizophrenic middleware concept [QPK01] as a solution
to both the genericity and the interoperability problems. Schizophrenic middleware ex-
tends generic middleware to simultaneously support multiple interacting personalities
within the same middleware instance. Interoperability is provided through dynamic
gateways between these interacting personalities. We have implemented a free soft-
ware schizophrenic middleware, PolyORB [PQK+01], to assess the feasibility of this
concept. We have also implemented personalities: CORBA [OMG98], SOAP [W3C00]
and the Ada 95 Distributed System Annex [ISO95] (DSA). We have practised pervasive
code reuse when personalizing our middleware. We also demonstrated that dynamic
gateway operate between various distribution models.

In this paper, we show that our schizophrenic middleware is able to support differ-
ent distribution models. Specifically, we address Message Oriented Middleware (MOM)
personalization for PolyORB. We then discuss effective gains provided by schizophrenic
middleware architecture both as a rapid prototyping platform to deploy new middleware
at low cost and as a solution for interoperability between distribution models.

We first give an overview of the schizophrenic middleware concept, and of our im-
plementation: PolyORB. We then study existing MOM, giving the structure of a canon-
ical MOM, and compare significant MOM architectures with PolyORB’s design. We
show that MOM can be built using PolyORB. We finally illustrate this claim with the
design and implementation of MOMA, Message Oriented Middleware for Ada, derived
from JMS specifications. Design and performance issues, as well as interoperability
with object-oriented distributed systems, are discussed.

2 Overview and architecture of PolyORB

The choice of a middleware impacts the design of distributed applications. When inte-
grating legacy components in a complete application, it is often necessary to use various
types of middleware supporting distinct distribution models. We refer to the capability
of a middleware to allow entities that exist within different distribution models to ex-
change information with, and perform services on behalf of, each other, as interoper-
ability or interoperability between distribution models.

Most middleware implementations provide similar sets of common abstractions to
distributed applications. Generic middleware may therefore be built around canonical
elements (with a design patterns or component approach [GHJV94]), which are person-
alized to conform to a specific distribution model. Existing projects have investigated

3

this approach: Jonathan [DHTS98] for CORBA or Java/RMI middleware, Quarterware
[SSC98] for CORBA, RMI or MPI, and Advanced Communication Toolkit [FM99]
(ACT) for CORBA and cBus (a MOM personality). They demonstrate that most of
middleware functionality can be described as a personality-agnostic set of services. A
personality is then defined as a set of concrete modules providing access to generic
middleware services.

However, these projects do not provide distribution model interoperability. A per-
sonalized middleware remains monolithic and only one distribution model is allowed
per instance. PolyORB [PQK+01] strives to resolve this issue. It extends the notion of
generic middleware to allow simultaneous support for multiple personalities within a
single executing middleware instance. We refer to middleware that exhibit this property
as schizophrenic.

In the remainder of this paper, we call entities the elements of a distributed appli-
cation that are made remotely accessible through middleware, such as CORBA objects,
RPC procedures, JMS queues, etc.

2.1 Overview of PolyORB

Let us now list properties of schizophrenic middleware:

– patterns: middleware components are identified to well-known design patterns,
their implementation demonstrate their effective use.

– customizability: developers may customize middleware to fit specific needs, such
as resource management policy, transport protocol, etc.

– genericity: middleware factors out common behaviors or services that can be shared
by different distribution personalities.

– interoperability: entities, implemented over distinct personalities are able to trans-
parently interact.

To meet these properties, PolyORB decouples personalities. Application-level per-
sonalities and protocol-level personalities are connected to the neutral core layer as
shown in figure 2. Compared to a generic middleware architecture (figure 1), it sup-
ports interaction between personalities by means of the neutral core layer (shared by all
personalities).

Application personalities constitute the adaptation layer between application com-
ponents and middleware. They provide APIs to register application entities with Poly-
ORB’s core, and interoperate with the core to allow the exchange of requests with re-
mote entities.

4

���������������
���������������
���������������

���������������
���������������
���������������

�����������������
�����������������
�����������������

���������������
���������������
���������������

���������������
���������������
���������������

���������������
���������������
���������������

�����������������
�����������������
�����������������

���������������
���������������
���������������

personality
Protocol

personality
Protocol

personality
Application

personality
Application

Middleware

Fig. 1. Generic architecture

	�	�	�	�	�	�	�	�	
	�	�	�	�	�	�	�	�	
	�	�	�	�	�	�	�	�	

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

���������������
���������������
���������������

���������������
���������������
���������������

��������
��������
��������

�����������������
�����������������
�����������������

���������������
���������������
���������������

���������������
���������������
���������������

Application Application

Protocol Protocol

personality

personalitypersonality

personality

Neutral Core Middleware

Fig. 2. Schizophrenic architecture

– On the client side, it maps requests made by client entities from their personality-
specific representation to a personality-independent one. This neutral representa-
tion is then passed to the neutral core for further processing; results are translated
back from neutral to personality-specific form.

– On the server side, it receives requests for local objects from the core layer, assigns
them to actual objects, and returns results.

Protocol personalities handle the mapping of requests (representing interactions be-
tween application entities in a personality-neutral fashion) onto messages exchanged
through a communication network, according to a specific protocol. The requests are
received either from application entities (through an application personality and mid-
dleware core), or from another protocol personality, in which case PolyORB acts as a
proxy performing protocol translation between third-party nodes.

The Neutral Core Middleware acts as an adaptation layer between application and
protocol personalities. It manages execution resources and provides necessary abstrac-
tions to transparently pass requests between protocol and application personalities in
a neutral way. It is completely independent from both application and protocol per-
sonalities. This enables the selection of any combination of application and protocol
personalities.

By construction, the core layer acts as dynamic gateway to allow application and
protocol personalities to mutually use their services. This naturally leads to interoper-
ability: entities registered to an application personality are available to any client using
a middleware for which the corresponding protocol personality exists.

2.2 Architecture

Schizophrenic middleware requires a flexible implementation, So PolyORB extensively
rely on reusable modules: whenever possible we use design patterns to facilitate code
maintenance and readability. We use component-oriented programming, meaning that
services are built according to the design pattern ’component’, communication between

5

them is done via synchronous message exchange. The TAO project has demonstrated
how design patterns can be powerful tools [SC97]. We have also experienced in our
own projects like GLADE [PT00] how they can be used to allow configurability for
real-time tasking profile [DB98]. With the help of design patterns, we also achieve the
schizophrenia properties.

�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

servant

object

process

subrogate

obj. ref

marshaling

request

access pt

client server

ne
tw

or
k

request
receiving &

unmarshaling

representation

protocol

transport

binding

dispatching

activation

addressing

DSA application CORBA application

protocolSOAP

personality personality

personality

Fig. 3. Invocation request path

Basic services: PolyORB’s core and personalities design reflects customization, inter-
operability, and genericity. We have pointed out in [QPK01] fundamental services in
distributed applications. We have extended it and list now seven different services.

Figure 3 presents an example of interaction between these services. This scenario
demonstrates the successive steps of a method call where a DSA application invokes a
method of a CORBA object using the SOAP protocol.

– Addressing Each entity is given a unique identifier within the entire distributed
application.

Before any invocation calls on the CORBA object, the DSA application personality
looks up the DSA reference associated to the CORBA object.

– Binding Middleware establishes and maintains associations between interacting
objects and resources allowing this interaction, e.g. a socket, and an associated pro-
tocol stack. This service is inspired in part by the ODP binding [ODP95,BS97] and
in part by the binding protocol of the SOR system [Sha94].

In the example, the middleware core on the client side creates an object that com-
prises a socket and a SOAP protocol machine, and acts towards the application
on behalf of the remote object it is bound to. Local calls to this “placeholder”, or

6

surrogate, object are translated to communication with the middleware node that
supports the remote object.

– Marshaling Request parameters must be translated into a representation suitable
for transmission over network.

The DSA function issued a request on the CORBA object. The request parameters
are marshaled from a PolyORB independent representation to a protocol personal-
ity dependent representation, here SOAP.

– Protocol Middleware implements a protocol for the transmission of requests amongst
nodes.

Marshaled parameters and invocation meta data (caller and callee information, etc)
are serialized.

– Transport A communication channel is established between a node and an object
to transmit requests.

The SOAP protocol personality opens a socket to the remote node.
On the remote node, the request is received: Transport, Protocol and Representation
services unpack and unmarshal it. It is then passed to the core middleware.

– Activation Middleware ensures that a concrete entity implementing objects is avail-
able to execute the request.

The core middleware calls the CORBA object adapter, it ether finds an available
servant, or create one.

– Dispatching Middleware assigns execution resource to process every incoming re-
quest.

An executing thread is affected to the incoming request, depending on PolyORB’s
tasking policy. The request is then executed by the CORBA object.

The core middleware provides an implementation for all these basic services. These
can be used as is by personalities, or extended to provide applications with specialized
functionality.

Advanced Services: Some distributed model also provides advanced services. They
are facilities that solve higher level problems specific to distribution:

– Naming services provide association between entities references and symbolic
names, e.g. CORBA COS Naming, JNDI.

7

– Termination services determine consensus on whether a distributed application
has completed its task or not. Such as service is present in GLADE, the DSA imple-
mentation.

– Shared Data services provide transparent access to data shared by different nodes
in a distributed application. Such a service is also present in the DSA.

– Synchronization services provide mechanisms to coordinate actions of different
nodes, e.g. distributed mutexes.

– Interface repository services provide a database describing the interface of appli-
cation entities, i.e. the set of interactions that they support, and the types of their
parameters. An example of such service is the CORBA Interface Repository:

Personalization: Various distribution models are implemented by creating personality
modules that are built on top of PolyORB’s core functionalities. Genericity of the mid-
dleware core allows reuse of common services. First studies showed that up to 65% of
the code used to build CORBA middleware on top of PolyORB’s architecture comes
from the neutral core middleware.

Moreover, since the neutral layer decouples relationships between personalities, in-
teroperability is obtained in constant cost; there is no combinatorial explosion when
adding a personality even if it needs to interoperate with several others.

SOAP and GIOP protocol personalities, and CORBA and DSA application person-
alities, have been implemented and used to demonstrate full interoperability. To assess
the full spectrum of schizophrenic middleware capabilities, a MOM personality was
contemplated as a test case. Further sections give an overview of MOM architectures,
then detail our work to integrate a MOM personality to PolyORB and discuss interop-
erability between MOM and ORB.

3 Case studies in MOM architectures

Message Oriented Middleware are distributed systems based on messages exchange. In
some respects, they extend the mailbox model to applications. They are used in wide-
scale applications like several information systems [Inc00]. Messages represents data
meaningful either for the emitter, the receiver, or the MOM. They are used to save,
route, deliver or get information amongst application nodes scattered across a network.

Typical MOM characteristics are well-identified. Among them, we find message
tranport protocols, routing policies and some MOM-related services (naming services,
...). Unfortunately, each vendor used to come with its own API and a closed architec-
ture. WebsphereMQ (formerly MQSeries1) from IBM has become the de facto standard
although different vendor-dependent solutions are also available. All of these differ in
their message passing mechanisms and their transport policies. Java Message Service
[SUN99] (JMS) is the only generally adopted set of public specifications It provides a
common API and a general MOM architecture, that covers all of these points.

1 http://www-3.ibm.com/software/ts/mqseries

8

Message passing mechanisms fall into three categories, depending on the way mes-
sages are sent:

– message exchange: messages are directly delivered to the receiver. Message deliv-
erance is one to one.

– message queues: messages are delivered to queues, then read by or sent to the
recipient. Message deliverance is one to one, often called Point-to-Point (P-t-P)

– message topics: messages are delivered to topics, then read by or sent to one or
more registered clients. Message deliverance is one to many, often termed Pub-
lish/Subscribe (Pub/Sub)

The Queues and Topics models differ only by the number of clients who can access
them and read their content. A queue can be read by only one client, whereas topic can
be read by all of clients registered as subscribers. In this paper, we use the term message
pool to denote either a message queue or a message topic.

Transport policies control how a client sends, receives or destroys message. A client
can use:

– synchronous protocols: the client remains blocked during message emission or
reception. Such protocols are seldom used, they require rendezvous mechanisms to
synchronize client and message pools, and diverge from message passing paradigms.

– asynchronous protocols: transport services do not block client exception and han-
dles concurrently message passing functions.

– call-back mechanisms: the client is notified by a call-back mechanism that a new
message has arrived in one of its message pools.

– group communication: message call-backs are broadcasted to multiple subscribers
using a group communication service such as multicast, peer to peer, etc.

Figure 4 presents a typical MOM architecture. Clients create, send and receive mes-
sages by means of an interface based on a software and network architecture to route
and store messages. This underlying infrastructure is divided into message pool servers,
and a provider, which handles the underlying network architecture federating clients
and servers, and controls access to message pools as well as message routing and trans-
port (figure 4).

This decoupling between these two functions allow a great variety of designs. We
describe some of them, focusing on their similarity to PolyORB design.

9

MOM
interface

Client

Network Infrastructure

Server
Message Pools

Provider Node

Server
Message Pools

Provider Node

MOM
interface

Client

Provider NodeProvider Node

Fig. 4. MOM’s canonical architecture

3.1 JMS: one specification, multiple architectures

Sun’s Java Message Service is the first publicly available set of specifications provided
as a standardized API for both P-t-P and Pub/Sub message passing models. JMS’s goal
is to provide a simple solution to use MOM in Java. It precisely describes the differ-
ent steps involved in MOM messages life-cycle: creating, sending, receiving, reading
or destroying messages. JMS only specifies an API, it does not address the underlying
required layers of any distributed infrastructure such as transport protocols, data rep-
resentation, etc. This is delegated to the JMS Provider: a distribution system on top
of which is implemented the API. Thus, each JMS implementation specifies its own
provider, leading to incompatibilities amongst them. Different JMS may not be able to
interoperate. Nevertheless the standardized API provides portability of existing appli-
cations from a JMS implementation to another.

JMS providers can either be new MOM infrastructures, only supporting JMS API or
existing vendor products extended to support this API. This demonstrates flexibility in
the design of the JMS provider: most of MOM are now adapted to support the JMS API,
other platforms use agents (JORAM [Obj98]), peer to peer technologies (OpenJMS
[exo00]).

To some extent, JMS is similar to a PolyORB application personality: it provides
the required interfaces to exchange messages. But, the underlying concretization of its
interfaces covers the whole distribution logic and thus implies private architecture and
implementation choice.

3.2 xmlBlaster: one MOM, multiple protocols

The Open Source project xmlBlaster [xml00] proposes its own MOM API and architec-
ture. Written in Java, this middleware offers both P-t-P and Pub/Sub models, messages
are described with XML-encoded meta information.

The main objective of this platform is to offer multiple transport protocols. Thus,
communication between a xmlBlaster node and applications can be done using CORBA,
RMI, XML-RPC, SOAP, e-mail (SMTP) or raw sockets. The application is independent

10

from the protocol layer, it is a configuration option set by the application developer or
during deployment. It then provides MOM services to a wide range of clients, from
CORBA objects to e-mail robots or Web applications. Such an heterogeneity amongst
proposed protocols is uncommon.

xmlBlaster is very flexible: protocols for incoming and out-coming message can be
different, allowing greater flexibility in application configuration. This is useful for Web
applications, a message sent as a SOAP request can be replied by e-mail.

Its message pools can be accessed using CORBA, hence their primitives are avail-
able from different programming languages, the only requirement is the availability of a
CORBA mapping for this language. Currently C, C++, Java, Perl and Python are avail-
able. Thus, this architecture demonstrates that a MOM can be fully implemented over
CORBA.

The multiple protocols approach proposed by xmlBlaster is similar to PolyORB’s
one : pools are implemented in xmlBlaster’s engine and communicate with its clients
through different plug-ins (i.e. instantiation of a protocol). Hence, this design provides
the same decoupling as for PolyORB’s core and protocol personalities.

3.3 CORBA Notification: CORBA & MOM

Initial CORBA specifications involved coupling between client and server: commu-
nication is synchronous and Point-to-Point [GCSO01]. Such a communication model
implies synchronization between nodes: they shall be available at the same time to com-
plete the data transmission. This is not optimal for event propagation within an ORB.

CORBA COS Event and its superset COS Notification have been introduced to
solve these specific needs to support event-driven mechanisms, such as alarm signals,
providing MOM Pub/Sub mechanisms.

The CORBA Event Service defines three distinct roles: the Supplier produces
event data; the Consumer receives and process event data and the Event Channel is
the abstract medium through which consumer and supplier asynchronously communi-
cate.

This service decouples events suppliers and event consumers: events delivery from
one point to another does not require them to know about each other. The Event Channel
enables asynchronous communication between consumers and suppliers.

The CORBA Notification Service extends the COS Event Service and provides sup-
port for quality of service (QoS) as well as event filtering.

These services provide MOM Pub/Sub functionalities to CORBA objects. They
both propose an approach common to PolyORB’s one: to build a new distribution
model, they use existing middleware services. In this case, CORBA provides its ser-
vices to build a MOM and act similarly to PolyORB core middleware. However, they
still use CORBA constructs and semantics, which may impair performance. Our design
is similar, but rely on a reduced set of services as foundation to build middleware, and
could potentially demonstrate better performance.

11

4 Building a MOM on top of PolyORB

The previous section shows that MOM can be implemented on top of very different
architectures. We now detail how to build a MOM over PolyORB’s architecture.

4.1 MOMA: MOM for Ada

There was no Message Oriented Middleware for Ada when we decided to implement
MOMA. We decided to rely on existing concepts to design our own MOM for Ada.
To do so, we adopted JMS specification and concepts as a foundation. It covers all
typical MOM uses and relies on well known patterns. MOMA specification is a thick
translation of JMS API to Ada 95.

Our goal was not only to implement a basic but functional MOM for Ada. We
wanted to show through MOMA that MOM can be built on top of PolyORB. We also
wanted to demonstrate that MOMA was able to interoperate with other distribution
models. We took advantage of the schizophrenic architecture to enrich the classical
MOM concepts in order to provide interoperability with other ORB.

In this section, we describe the design of Message Oriented Middleware for Ada
(MOMA). A MOMA application is built around the following elements:

– MOMA messages carry information between clients. As a convenience, they are
encoded in XML in order to ease messages readability.

– MOMA message servers handle the previously defined message queues and top-
ics.

– MOMA clients use MOMA API to format, send or receive MOMA messages.
They interact with MOMA message servers.

– other clients can use several protocol layers to exchange messages with MOMA
servers. This requires PolyORB to be configured with the appropriate protocol layer
or protocol personality.

– Administration objects are used to setup the MOM and to activate functionalities
such as authentification or naming services.

MOMA messages are divided into three parts, a header field containing informa-
tion to route the message, a QoS field that details the quality of service applied to this
message and a payload that is the actual data carried by the message.

Payload can be of the following types:

– Data Message contains data marshaled from various Ada 95 types: predefined
types, records, arrays or strings. We also provide support for raw data which may
be used to marshal binary data such as an image.

12

– Request Message holds an invocation request on an entity visible in the middle-
ware instance. In some respects, this may represent a method invocation on an
object present on the destination node.

A Data Message carries data to its destination. In this case, the receiver is in charge
of parsing and processing the message. We say that this message is implicitly deliver to
the receiver.

A Request Message is an invocation request sent to particular objects and requires
a specific handling. Two processing policies are available and they reproduce the call-
back mechanisms presented in section 3 :

1. The arrival of such a message may result in an implicit invocation call. In this case,
the receiver polls on the message pool and executes the invocation call itself.

2. The object receiver registers a call-back in the MOM. At the request message ar-
rival, the MOM activates this call-back in order to execute the invocation method.

4.2 Mapping MOMA functionalities to PolyORB

As for JMS, a provider supports MOMA distribution functions like all the message
passing mechanisms. Moreover, MOMA’s provider handles distribution issues raised
by MOMA servers and clients communication, as well as message pools.

Let us give an overview of MOMA communication core mechanisms and their ar-
ticulation. In a canonical MOM (see figure 4), a MOM interface provides primitives to
clients and allows them to interact with message pools through requests (e.g. to post
and receive messages). In between, an associated protocol transports them. We can then
identify PolyORB’s personalities to handle these two aspects of MOM: message pools
are part of an application personality, whereas a protocol personality addresses transport
mechanisms.

The MOMA provider is then the combination of these two personalities and the
core middleware: each one provides services to mask distribution. We detail this point
in section 5.1.

Application personality: Interactions between a client and a message pool are similar
to method calls on objects in a distributed application. We can then define a MOM
application personality implementing message queues and topics mechanisms. MOM
clients will interact with these entities to send and receive their messages.

Thus, this personality propose two entities Queue and Topic, that respectively pro-
vide P-t-P and Pub/Sub message passing models. Their primitives are:

Publish to post a new message to a pool
Get to a/synchronously get messages from a pool
Delete to delete messages from a pool
Subscribe to subscribe to a topic
Unsubscribe to unsubscribe to a topic

13

Protocol personality: Another key point is the definition of a protocol personality. It
can support several transport mechanisms: synchronous or asynchronous requests, call-
back mechanisms and group communication. None of them are mandatory to build a
MOM, even if asynchronism and group communication provide better performance in
most cases. Protocol personality actual capabilities depend on the performance expected
for MOM. Its definition is then minimal: the protocol personality provides mechanisms
to transport requests between a MOM client and a message pool.

Hence, existing protocol personalities are sufficient for our purpose.

MOMA related services: MOMA personalities only detail how clients and pools com-
municate, and operation on pools.

Yet, MOMA does not only provide facilities for raw message passing: it also pro-
vides numerous annex services, which are not directly linked to distribution but still
required for normal operations:

– Message formatting: message pools do not need to know how payload messages
are built, hence they are only data stored but not used by both application and
protocol personalities. Only MOM clients requires a message formatting API, it is
then defined outside of MOMA personalities.

– Naming service: MOM clients should use a naming service to get references to
message pools from a symbolic name.

– Authentification service: MOM clients access to message pools is restricted to
authorized clients only, who provide correct credentials.

– Administration service: MOM message pools require to be set up either on startup
time, or during application execution. The Administration service provides control
to define message pools characteristics such as pool size, time out delay before
message deletion, number of concurrent clients, etc.

Other services linked to MOM life-cycle can be defined, such as logging, redun-
dancy services. Nevertheless, they are not MOM core services. These services could
be distributed or not. Yet, this is a configuration issue out of the scope of this paper: it
would require to precisely define Quality of Services requirements for each services.

Thus, we have proposed a mapping of MOMA functionalities to PolyORB lay-
ered structure. It shows that application personality is the only PolyORB specific part
required to implement MOMA, we reuse existing protocol personalities. We defined
MOM annex services, but did not assess their role in PolyORB’s architecture.

5 Implementation and discussion of the architecture

Message pools are a key mechanism in the implementation of MOMA. We have sev-
eral options to implement them: over an existing application personality, or in a new
dedicated one.

14

Building MOM over an ORB has already been addressed by xmlBlaster or CORBA
COS Event: MOM is built on top of an existing ORB by registering MOM entities
with the ORB as object implementations; clients and message pools interact using the
ORB’s method calls. Hence, one might consider using the CORBA or DSA application
personality. However, we want our MOM to act in a MOM-only distributed application
or in a heterogeneous middleware instance, mixing ORBs and MOM.

We want our implementation to be light enough to provide good performance. Us-
ing CORBA or DSA application personalities to implement message pools may not be
optimal : they introduce mechanisms to handle a large set of functions such as dynamic
invocation, exception handling. MOM primitives are clearly defined and do not require
these mechanisms in a MOM-only architecture. We chose not to use existing applica-
tion personalities and design a specific one, that provides the minimal set of required
functionnalities to support message pools primitives. We then show how message pools
implementation provides interoperability with ORB implementation objects.

Then, we demonstrate how these interacting objects lead to interoperability between
MOM and ORB distribution models and provide a few test cases for which this feature
is interesting.

5.1 Implementation of MOMA

In the previous section, we restricted the implementation of MOMA to the creation of
an application personality for the implementation of a message pool. We now detail
how we actually build one.

We want MOMA personality to be as light as possible. Yet, a MOMA distributed
application also requires the basic services we defined.

PolyORB’s layered design concentrates in its core and protocol personalities some
of the services a middleware should implement: when a PolyORB node receives a re-
quest for a local object, a protocol personality handles the request, unmarshals the data
and creates a PolyORB request, execution request on a local object, independent from
any distribution models. Thus, we reuse addressing, binding, marshaling, protocol and
transport services from the core or existing protocol personalities.

The activation and dispatching services have to relay this request to the servant
concretizing a MOMA message pool for execution. This is the only part specific to this
distribution model.

We chose a simple implementation of these services: activation is done on entities
created at startup time, dispatching service associates one thread per message pool.
Thus, we provide a way to create simple servants, sufficient to holds message pool
implementation entities and to execute primitives on them.

15

Hence, the MOMA provider is the combination of both core middleware and appli-
cation, and protocol personalities: they all provide services required to mask distribution
issues.

Schizophrenia as a conception scheme lets us concentrate only on the object imple-
mentation: genericity alleviates distribution problems: they are already solved by exist-
ing components. Thus, PolyORB let us rapidly prototype our MOM, and concentrate
only on MOMA functionnalities instead of distribution issues.

MOMA message pools and administration objects are the fundamental elements
of our distributed model. As part of a PolyORB’s middleware architecture, they will
be visible from other application personalities: an ORB client can send an invocation
request on a MOMA message pool, and interacts with it to send or receive messages; a
MOMA message pool can send a call-back invocation request to an ORB object.

Interaction between these two elements is similar to the invocation scheme de-
scribed section 2.2. We thus provide interoperability between MOMA message pools
and ORB objects. Yet, we need to assess the extent of this mechanisms, and how we
can use MOM & ORB distribution models simultaneously in a distributed application.

Benefits from schizophrenia: Our implementation demonstrates basic MOM func-
tionalities as well as effective interoperability between various distribution models through
dynamic gateways. Thus, schizophrenia clearly alleviated most of the required work.

Moreover, the development process shows how genericity allows some feature to
be reused by others personalities: initially, PolyORB’s core lacked support for asyn-
chronous requests. Thus, neither CORBA nor DSA could make asynchronous calls.
PolyORB’s design allowed us to add it as part of the core middleware, thus all person-
alities gained this feature. We did not only implement MOMA features into PolyORB’s
architecture, we also make CORBA and DSA benefit from it. Hence, CORBA can now
use oneway operations, DII, DSA can now use the pragma Asynchronous.

So, our platform does not only demonstrate interoperability between distribution
models, but also how a large part of the mechanisms can be factored out of personality
specific module and then reused: MOMA implementation was reduced to the develop-
ment of pure application logic, generic layer provides most of required services.

Note to reviewers: final paper will detail this point, and provide figures on actual
code reuse.

5.2 Assessment of Interoperability

In the previous section, we have detailed the implementation of MOMA message pools
and showed how they can interoperate with ORB implementation objects. We now ex-
tend this result to MOM & ORB interoperability.

16

We have defined interoperability between distribution models as the capability of a
middleware to allow entities defined within a given distribution model to interoperate
with remote entities from a different distribution model. Such a definition is natural
when the platform only involves ORB-like distribution model. We want to extend this
notion and consider middleware architectures mixing MOM and ORB distribution mod-
els. This raises several problems, and leads to the question of interoperability between
MOM, and between MOM and ORB.

In the first case, several solutions are already available and functional. For exam-
ple, gateways between MOM such as SonicMQ bridge for MQSeries [Sof00] bring the
required functions to route message transparently from one MOM infrastructure to an-
other. They are tied to two MOM vendors, and thus provide limited interoperability.
They lead to combinatorial explosion: a specific bridge is required for each combina-
tion of MOM, and may also impair scalability: a bridge is a bottleneck between two
MOM infrastructures.

PolyORB, thanks to multiple protocol personalities, could also propose intercon-
nection with other existing MOM, such as MPI or JMS implementations. This would
require the instantiation of a protocol personality. We did not assess its feasibility: xml-
Blaster already demonstrates such an architecture, introducing multiple protocol plug-
ins as a way to interoperability.

Instead, we chose to study MOM and ORB interoperability. We first have to extend
the definition of interoperability we gave to handle this case, and check its consistency.

PolyORB design makes MOMA objects available in the same middleware instance
than CORBA or DSA objects, hence one entity can call entities of another object,
whatever its application personality. This covers interoperability as previously defined
above: a CORBA object can call MOMA pools primitives and interact with a message
pool, and the Request Message allows a MOMA client to send make a method call on
a CORBA object.

We can then extend this result and build distributed applications in which MOM
and ORB entites interact. We detail some test case where a MOM-ORB interoperability
may be interesting.

– A client, whatever its application personality, may send a processing request to a
MOMA message topic entity to which several CORBA or DSA objects are reg-
istered. They will then process the request and return the result if any. Hence, a
MOMA object may serve as a proxy object between a client and a server object,
providing new services. Such a configuration may easily implement distributed
computation, log or redundancy services. It may also allow a nomadic client to
have its requests processed when it is off-line: it sends its request to a message
pool, a server receives this request, processes it and then post the reply to the mes-
sage pool. Later, the client accesses the results.

17

– As MOMA message queue objects are built on top of a minimal application person-
ality, their methods are the low level primitives defined to directly access queues.
We can then contemplate using MOMA message facilities to implement services
for the CORBA personalities, for instance CORBA COS Notification or COS Events
which provide MOM functionalities.

These scenarios are a part of the applications that may use both MOM and ORB ar-
chitectures. Both paradigms can be combined to alleviate some of the problems set by
large scale or nomadic applications and propose new features to a distribution model:
ORB may benefit from MOM’s solutions for off-line request processing, group com-
munication; MOM may have their request processed by ORB implementation objects.

Hence, coupling MOM and ORB facilities in the same middleware architecture
brings great flexibility to distributed application design, and provides interesting com-
bination.

5.3 Discussion

We have detailled the implementation of our MOM, and gave some test cases describing
how MOMA can interact with ORB personalities. Yet, our architecture does not cover
all issues raised by MOM-only and MOM & ORB applications.

MOM-only applications MOMA still relies on the existing protocol personalities:
CORBA and SOAP. The communication models they use are not designed to efficiently
support one-to-many communications used by large Pub/Sub infrastructures. Without
a convenient protocol personality supporting group communication, MOMA-only ap-
plications may not scale, limiting application performance. But this only an implemen-
tation issue: group communication semantic is fully integrated to MOMA API. Thus,
our architecture allows us to extend MOMA to support full MOM functionnalities by
providing the corresponding protocol personality.

Construction of requests We proposed test cases of MOM & ORB applications. Yet,
interaction between MOM and ORB entities is limited by the knowledge of entities
reference and their interfaces. We have defined advanced services: naming service and
interface repository services to provide visibility on existing entities and interfaces.
Naming service will simplify entities localization, interface repository will provide all
the necessary information to construct a request, they will ease application deployment.

18

Payload message formatting In some cases, an ORB has to send a message to a
MOM client, it needs to format the payload message. We defined the MOMA message
formatting service, to provide the abstraction to build the payload, and implented it as a
separate service, independent from PolyORB. This service must be visible by all object
implementations, either from PolyORB, but also from other native middleware.

Hence, MOM & ORB interoperability lacks support for some advanced services
to ease interactions between MOM clients, message pools and ORB objects. But the
first steps to allow interoperability between these two distribution models are now com-
pleted, we have experienced it through simple test cases.

6 Conclusion

In this paper, we have defined schizophrenic middleware. Schizophrenic middleware
extends the concept of generic middleware by allowing several personalities to exist
simultaneously on the same middleware instance. Moreover, these personalities can in-
teract in order to produce dynamic gateways. We defined an original architecture to sup-
port this concept. This architecture is based on the decoupling of application and pro-
tocol personalities by means of a neutral core layer. PolyORB, our free schizophrenic
middleware, ensures an excellent code factorization ratio, and provides an interesting
solution to the issue of interoperability between distribution models (M2M).

We first validated our work on interoperability between RPC-like distribution model
such as CORBA or DSA. We have extended PolyORB to support personalization into a
Message Oriented Middleware. An initial case study has demonstrated that the canon-
ical architecture of classical MOM fits perfectly in the schrizophrenic architecture.
Therefore, the design of the corresponding application and protocol personalities was
quite natural. As an initial requirement, the application personality provides an Ada
message passing interface modeled after JMS. PolyORB thus becomes the first free
middleware providing a MOM solution for the Ada community.

As a consequence of schizophrenic properties, PolyORB enables MOM and ORB
applications to interoperate. We have successfully demonstrated this interoperability
between Ada CORBA and MOM applications and we are about to proceed to more
general experiments. Moreover, this middleware is not dedicated to a specific protocol
and can be configured for any classical protocols like GIOP, SOAP or raw sockets.
We are currently extending PolyORB to provide some of the most frequent services
available in classical MOM.

In the future, we also want to address semantic interoperability to let a component
A based on distribution model DMA interact with a component B based on distribution
model DMB the way it could do if B was based on DMA. So far, this can only be achieved
using a dedicated gateway translating DMA protocol and behavior to DMB ones. How-
ever, such a gateway is typically an ad-hoc component that cannot be reused. The goal
of semantic interoperability is to extend the capabilities of the dynamic gateways pro-
vided by a schizophrenic middleware. This should increase the reuse of components in
distributed applications.

19

References

[Bak01] S. Baker. Middleware to middleware. In Proceedings of the 3rd International Sympo-
sium on Distributed Objects and Applications (DOA’01), September 2001.

[BS97] G. Blair and J. Stefani. Open Distributed Processing and Multimedia. Addison Wesley,
1997.

[DB98] B. Dobbing and A. Burns. The Ravenscar tasking profile for high integrity real-time
programs. In Proceedings of SigAda’98, Washington, DC, USA, November 1998.

[DHTS98] B. Dumant, F. Horn, F. Dang Tran, and J-B. Stefani. Jonathan: an open distributed
processing environment in java. In Proceedings of the IFIP International Conference
on Distribut ed Systems Platforms and Open Distributed Processing, pages 175–190,
Londres, 1998. Springer Verlag.

[exo00] exolab.org. Openjms, 2000. http://openjms.exolab.org.
[FM99] C. Francu and I. Marsic. An Advanced Communication Toolkit for Implementing the

Broker Pattern. In Proceedings of ICDCS’99. IEEE, June 1999.
[GCSO01] Pradeep Gore, Ron Cytron, Douglas C. Schmidt, and Carlos O’Ryan. Designing

and optimizing a scalable CORBA notification service. In LCTES/OM, pages 196–204,
2001.

[GHJV94] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of
Reusable Object-Oriented Software. Addison Wesley, Massachusetts, 1994.

[Inc00] MINT Communication Systems Inc. Financial middleware - from theory to reality,
2000. http://www.simc-inc.org/archive9798/Apr20-1998/shefi.pdf.

[ISO95] ISO. Information Technology – Programming Languages – Ada. ISO, February 1995.
ISO/IEC/ANSI 8652:1995.

[Obj98] ObjectWeb. Joram – java open reliable asynchronous messaging - datasheet, 1998.
http://www.objectweb.org.

[ODP95] ODP. ODP Reference Model: overview, 1995. ITU-T -- ISO/IEC Recommendation
X.901 -- International Standard 10746-1.

[OMG98] OMG. The Common Object Request Broker: Architecture and Specification, revision
2.2. OMG, February 1998. OMG Technical Document formal/98-07-01.

[PQK+01] Laurent Pautet, Thomas Quinot, Fabrice Kordon, Samuel Tardieu, Fabien Azavant,
Vincent Niebel, Sébastien Ponce, and Tristan Gingold. Polyorb, 2001. http://libre.
act-europe.fr.

[PT00] Laurent Pautet and Samuel Tardieu. GLADE: a Framework for Building Large Object-
Oriented Real-Time Distributed Systems. In Proceedings of the 3rd IEEE International
Symposium on Object-Oriented Real-Time Distributed Computing (ISORC’00), New-
port Beach, California, USA, June 2000.

[QPK01] Thomas Quinot, Laurent Pautet, and Fabrice Kordon. Architecture for a reuseable
object-oriented polymorphic middleware. In Proceedings of PDPTA’2001, Las Vegas,
Nevada, Etats-Unis, June 2001.

[SC97] D. Schmidt and Christ Cleeland. Applying patterns to develop extensible and maintain-
able ORB midd leware. Communications of the ACM, CACM, 40(12), 1997.

[Sha94] M. Shapiro. A binding protocol for distributed shared objects. In Proc. of the 14th
Int’l Conf. on Distributed Computing Systems (ICDCS-14), pages 134–141, Poznan
(Pologne), June 1994.

[Sof00] Sonic Software. Sonicmq bridge for mqseries user’s guide, 2000. http://www.

sonicsoftware.com.
[SSC98] A. Singhai, A. Sane, and R. Campbell. Quarterware for Middleware. In Proceedings

of ICDCS’98. IEEE, May 1998.
[SUN99] SUN. Java message service, 1999.

20

[W3C00] W3C. Simple Object Access Protocol (SOAP) 1.1 , May 2000. W3C note.
[xml00] xmlBlaster.org. xmlblaster, 2000. http://www.xmlblaster.org.

