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Abstract:

 

 This paper presents an evolutionary prototyping
methodology dedicated to the design, verification and
implementation of embedded systems. This methodology
relies on 

 

L

 

f

 

P

 

: a formalism combining UML-like structu-
ring capabilities and a precise semantic suitable for both
code generation and formal verification based on colored
Petri nets. We apply this methodology on a small example
and show how it enables system designers to detect non-
trivial problems on the system.
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1. INTRODUCTION

 

Design and implementation of industrial systems is get-
ting more and more complex 

 

[9]

 

. This is a problem for em-
bedded distributed systems for which a high quality is
required. Several problems can be identified:

• Standard notation, such as UML 

 

[15]

 

 can be considered
as an important contribution to describe a solution.
However, it is more suitable at an early stage of applica-
tion design and implementation. Thus, UML specifica-
tions are difficult to check due to their semi-formal
semantics (dynamic aspects are not formally defined). A
typical illustration is the interaction between compo-
nents of a system. This information is dispatched into
several diagrams: interaction, sequence and state.

• Once the specification of the system is completed,
implementation needs to be done. Then, developers may
interpret these specifications and we can get a program
that is not exactly the image of the corresponding speci-
fication.

• Tests of the system are usually performed on the pro-
gram. Then, when debugging the program, the initial
specification tends to disappear: modifications on the
program are not reported to the specification. Security of
such modifications usually decreases with time over the
maintenance of the system.
Evolutionary prototyping 

 

[13]

 

 is a good solution to these
problems since it enhances the definition of a model serving
as a basis for both the description of the system and auto-
matic code generation. By reducing the production cost of
an executable program, it promotes the model to be the cen-
ter of the development process. Then, a system is elaborat-
ed by successive refinements of the following operations:

• design/refinement of the model,
• evaluation of the model,
• code generation,
• evaluation of the prototype,

In evolutionary prototyping, a strong correspondence

between the model, programs and documentation may be
maintained. However, evaluation of the system still relies
on «traditional» testing techniques based on large bench-
marks.

This paper presents an evolutionary prototyping tech-
nique. Our methodology relies on 

 

L

 

f

 

P

 

 (Language for Pro-
totyping), a formalism dedicated to the description of
embedded distributed systems 

 

[18]

 

. 

 

L

 

f

 

P

 

 combines high lev-
el modeling facilities such as the ones of UML and a precise
semantics suitable for both code generation and system ver-
ification by means of formal methods (instead of bench-
marks-based testing).

Section 2. presents our prototyping methodology. Then,

 

L

 

f

 

P

 

 is described in Section 3. Section 4. details an example
of system specification using 

 

L

 

f

 

P

 

 and states some proper-
ties to be checked on this system. Finally, Section 5. shows
how a formal specification can be generated from the 

 

L

 

f

 

P

 

model and used to detect non-trivial errors.

 

2. METHODOLOGY

 

Our methodology is a model-based development in the
sense of 

 

[17]

 

: the model describes the system and serves as
a basis for validation (in our case, formal verification) and
code generation. Our methodological approach aims to im-
plement evolutionary prototyping capabilities based on:

• 

 

An integrative design approach

 

. 

 

L

 

f

 

P

 

 acts as a glue pro-
totyping language 

 

[2]

 

 between state of the art specifica-
tion formalisms (e.g. UML for system modeling, ODP
as a distributed component framework 

 

[8]

 

, Petri nets for
formal verification).

• 

 

An aspect oriented design framework

 

. 

 

L

 

f

 

P

 

 is based on a
multi views approach to system prototyping 

 

[7]

 

. Views
are dedicated to a given prototyping aspect: software
architecture, system implementation and formal prop-
erty description.

• 

 

A formalized development approach

 

 to system behavior
modeling and verification 

 

[19]

 

. 

 

L

 

f

 

P

 

 relies on well
formed Petri nets semantics 

 

[3]

 

 for formal verification.
• 

 

A hierarchical, structured and modular approach

 

 to
system modeling 

 

[4]

 

. 

 

L

 

f

 

P

 

 uses a component based
approach allowing hierarchical specification and behav-
ior refinement.
The main objective of 

 

L

 

f

 

P

 

 is to formalize relations be-
tween system modelling, formal verification and code gen-
eration of embedded distributed systems. Thus, we provide:

• transparent formal verification to enable its use in an
industrial context without requiring specific training and
skills 

 

[12]

 

,
• strong correspondences between the detailed descrip-
tion of a system, its proofs and its implementation. In



 

other words: «what you check and what you implement
is what you describe».
Figure 1 presents our methodology. Its input is an UML

specification of a system. UML is not suitable for direct
verification as noticed in the vUML project 

 

[10]

 

. This is
also true for distributed code generation from UML as men-
tioned in 

 

[14]

 

. So, extensions to UML have to be consid-
ered. 

 

L

 

f

 

P

 

 has been elaborated for this purpose. 

 

L

 

f

 

P

 

 can be
considered as an additional diagram that groups and enrich
information provided in other diagrams. This unambiguous
information is usefull to automate both code generation and
formal verification.

 

Figure 1 : 

 

Our evolutionary prototyping methodology.

 

The 

 

L

 

f

 

P

 

 model can be partially generated from UML
standard diagrams. However, it contains enriched informa-
tion compared to other UML diagrams: centralized descrip-
tion of components behavior by means of finite state
machines (FSM), identification of properties to be verified
and implementation directives. All this information is locat-
ed in 

 

L

 

f

 

P

 

 and can be checked without being concerned with
coherence problems between several diagrams.

Once the 

 

L

 

f

 

P

 

 model is produced, Petri nets synthesis can
be performed. In Figure 1, «synthesis» corresponds to a set
of transformations from 

 

L

 

f

 

P

 

 to Petri nets. Each one is ded-
icated to the verification of a given property according to a
given strategy. This reduces the complexity of the proof:
non relevant information can be discarded and thus, gener-
ated Petri nets are optimized.

Once all properties stated in the 

 

L

 

f

 

P

 

 model are verified
(which may require some modification and several refine-
ments on the diagram itself), code generation produces
pieces of programs to be compiled and deployed in the tar-
get execution environment.

As shown in Figure 1, the main interest of evolutionary
prototyping is to enhance the role of a model which en-
ables: 1) several refinement of the system since production
of the corresponding executable version is performed at
low cost, 2) formal verification manageable by engineers
since most of the process is hidden and performed automat-
ically, 3) use of the 

 

L

 

f

 

P

 

 model, even during the mainte-
nance phase.

To operate our methodology, we use a set of languages
dedicated to each prototyping phase: 

• UML for system specification and modelling, 
• 

 

L

 

f

 

P

 

 diagram to centralize informations and to enable
code generation as well as formal verification,

• Petri nets to apply formal verification procedures,
• Programming languages to implement the system.

 

3. THE L

 

f

 

P FORMALISM

 

This section summarizes the main features of 

 

L

 

f

 

P

 

. De-
tailed information and rationale can be found in 

 

[18]

 

.

 

L

 

f

 

P

 

 is a graphical Architecture Description Language
with coordination facilities. It is dedicated to the rapid pro-
totyping of embedded concurrent systems. 

 

L

 

f

 

P

 

 enhances an
existing UML model with information enabling automatic
code generation of concurrent programs and formal verifi-
cation.

To do so, 

 

L

 

f

 

P

 

 uses three orthogonal views adapted to
some specification aspects:

• the 

 

functional view

 

 (implemented as a diagram),
• the 

 

implementation view

 

 (annotations on the diagram),
• the 

 

property view

 

 (annotations on the diagram).
The functional view describes the system behavior in

terms of execution workflow of connected components and
the coordination between component instances. It also de-
scribes the system software architecture.

The implementation view describes the system imple-
mentation constraints (target executive, used programming
language, communication infrastructure) and the deploy-
ment topology.

The property view specifies properties to be verified by
the system (similar to the B proof-assertions 

 

[1]

 

). Such
properties are stated by means of invariants (for example, to
check mutual exclusion), temporal logic formulas (for ex-
ample, to check availability or fairness of a service) or other
statements that can be converted to a given formal method.
This view can be exploited to perform computer-assisted
formal verification but also introduces relevant information
for code generation (i.e. rutime checks).

 

3.1. The L

 

f

 

P Structure

 

The 

 

L

 

f

 

P

 

 functional diagram contains:
• a declarative part defining management information
(e.g. model name, author, version number, comments
and the associated UML model if any) and formal decla-
rations: types or constants. Elementary types are: integer
range, ordered enumerations or the opaque type. The
opaque type denotes variables which only support the
affectation operation and, thus, cannot influence the exe-
cution workflow.

• a list of entities: classes and media.
A 

 

L

 

f

 

P

 

 class corresponds to a complete UML instancia-
ble class. Thus, abstract or virtual UML classes have no
correspondence in 

 

L

 

f

 

P

 

.
A media is used to connect classes. It specifies both in-

teraction contract and communication semantics. It corre-
sponds to an UML association, aggregation or composition.

Table 1 presents the graphical representation for classes
and media.

 

3.2. L

 

f

 

P entities

 

As mentioned in Section 3.1., the 

 

L

 

f

 

P

 

 functional dia-
gram contains classes and media. Their description strongly

UML model

LfP

reformulation
enrichment

refinement

code
generation

Formal
specifications

synthesis

Programs

verification

Architectural 
description

formal debug

 

L

 

f

 

P Class L

 

f

 

P Media

 

Table 1: 

 

Graphical representation of classes and media

Class
name

Media
name



 

relies on 

 

L

 

f

 

P

 

-FSM (Finite State Machine) supporting vari-
ous elements of a class or media specification. Thus, we
present the 

 

L

 

f

 

P

 

-FSM structure prior to classes and media.

 

3.2.1. 

 

LfP-FSM

LfP-FSM uses a notation similar to the one of Petri nets
and provides some modelling facilities. They are used in
various parts of a specification; the main difference consists
in the signification of transition labels. LfP-FSM contains:

• a declarative part specifying a list of variables repre-
senting the execution context.

• the FSM itself. It specifies the execution workflow of a
class, a class role, a method or a media. A LfP-FSM
contains basic elements (or nodes) «wired» together
using connection links.
Variables of a LfP-FSM context are either local to a

class or media instance or shared between all of them. Vari-
ables are typed (according to a visible defined type) and
may hold a default value. As mentioned in Section 3.1.,
opaque variables only support the affectation operation.

Table 2 summarizes nodes to be found in an LfP-FSM:
• States are execution steps. Two special states are distin-
guished: BEGIN and FINAL corresponding to the initial
and final execution states. LfP-FSM has only one initial
state.

• Transitions express potentially guarded actions. Guard
conditions specify activation rules to be satisfied when
firing a transition. The transition name may reference
class role name (Section 3.2.2.), or a class method name.
A statement is executed after the firing, it modifies state
variables of the LfP-FSM visible at this level. These
have an atomic execution semantics. Safety conditions
express invariants useful for formal verification, debug-
ging and testing
Transitions may be linked to sequential code written
using any programming language, to be inserted in the
distributed application at code generation time. This
code may change opaque variables values only and thus,
cannot change the execution workflow.

• Shadow Transitions (S-Transitions) are graphical
aliases to existing transitions proposed to simplify LfP-

FSM.
• Hierarchical Transitions (H-Transitions) abstract sub-
LfP-FSM to increase readability. Sub-LfP-FSM have
one initial state and one terminal state. These are bound
to the H-Transition input state and output state.

• Barriers are special shared transitions corresponding to
a synchronization point between all concurrent instances
of a LfP-FSM.

• Protectors are shared locks (multi-level semaphores or
groups of semaphores) used to provide restricted access
to a shared resource. They are used to define critical sec-
tions between concurrent instances of a LfP-FSM. A
protector can be standalone or associated to one variable
or group of variables. The protector cardinality specifies
how many concurrent LfP-FSM instances may simulta-
neously get into the critical section.

• Binders are access points to media. LfP-FSM communi-
cate through binders by means of messages. A message
consists of three fields: 1) a message name known by the
media, 2) message discriminants that can be modified by
the media, 3) message arguments that must be opaque
for the media. Binders are declared in media and refer-
enced in classes.

• Constructors are used to create new class instances. An
initialization context has to be specified for created
instances.

Table 3 presents connectors to be used in a LfP-FSM:
• Arcs are used to link a State to a Transition, S-Transi-
tions, H-Transition or Barrier and vice versa. An arc
express the execution sequence. LfP-FSM are sequential
finite state machines. Thus, the number of input and out-
put arcs of a Transition (S-Transition, H-Transition, or
Barrier) is of exactly one.

• Protector Links connect Protectors to Transitions or S-
Transitions and vice versa to define critical sections.

• Media Links are used to connect Binders or Construc-
tors with Transitions or S-Transitions. Media Links
specify the connection direction (in, out or inout). A
Media Link specifies the binding contract between local
context variables and messages (discriminant, name and
arguments).

3.2.2. LfP Classes

A LfP Class corresponds to an UML implementation
class and expresses some functional aspects of a system. It
consists of:

• a declarative part specifying: 1) the class identifier, 2)
for each binder, potential messages and their parameters
(some of these messages correspond to public methods),
3) a list of private methods and their parameters, 4) defi-
nition of sequential code to be linked to transitions.

• a list of FSM defining : 1) the execution contract (main
FSM), 2) class roles (optional), 3) methods.
Definition of the main FSM is mandatory. It represents

the execution workflow of a class instance. Transitions in
the main FSM may reference class roles (if any) or class
methods.

Symbol name Icon

State

Transition

S-Transition

H-Transition

Barrier

Protector

Binder

Constructor

Table 2: Graphical representation of LfP-FSM basic elements

FINALBEGIN

LOOP
<i <= 3> 
  i++; 
[i > 0]

transition name
guard condition

statement
safety condition

LOOP transition name alias

block sub-net name

SYNC barrier name

protector name

protector cardinality

variable.lock

(4)

SC_channel.server

reference to a binder

server
binder name

ConveyerControler
target 
class 
name

Arc Protector link Media link

Table 3: Graphical representation of LfP-FSM connectors



Class roles correspond to alternative class behaviors;
their definition is optional. Each role is described using a
LfP-FSM. Transitions in a role may reference methods.

Class methods are also described by means of a LfP-
FSM defining the execution workflow (i.e. the method ex-
ecution contract).

Table 2 summarizes the graphical representation of the
class main LfP-FSM, a class role or of a class method.

3.2.3. LfP Media

Media connect instances of LfP Classes. It is possible to
use them as basic components or to assemble them into
more sophisticated communication patterns. Media con-
necting two or more LfP classes correspond to an UML as-
sociation, aggregation or composition. Media can also be
used to implement shared resources (list, FIFO, stack, etc.).

A media specifies binding constraints and communica-
tion protocol semantics. We base our approach on the ODP
contract definition [8]. A media consists of:

• a declarative part defining : 1) new types declaration 2)
media variables which are similar to class variables, 3)
the interaction contract consisting of several binding
constraints.

• the main FSM representing the communication contract
(communication protocol semantics).
The binding constraints specify: 1) a reference to the

connected binding point, 2) the communication mode
(synchronous or asynchronous), 3) the accepted messag-
es and their arguments, 4) the binding multiplicity (one,
all or any): one means that the binder is connected to only
one class or media instance; all specifies that the binder is
shared by all the connected classes instances; any leaves
this unspecified.

A media cannot play various roles, has no methods nor
associated constructors. Media carry on information on
classes request.

4. AN EXAMPLE

Let us consider a set of conveyers circulating on a path
divided in N segments as shown in Figure 3. A segment
may contain only one conveyer. Conveyers may cross be-
tween segments where a crossing zone is defined (noted Zi
in the Figure). When two conveyers cross, the first one gets
into a special path in the crossing zone and lets the other one
get out before entering in the segment.

Figure 3 : The conveyer system.

4.1. Conveyer Behavior in the System

Conveyers, segments and crossing zones are locally
driven by an embedded Control application. Command
centers drive conveyers movements (using the MOVE mes-
sage). However, these are not part of the system but corre-

spond to an «external» component (e.g. a piece of code that
already exists and has to be linked to the generated pro-
grams). Behavior of this component (instead of its imple-
mentation) is also represented to enable formal verification.

Therefore, the system contains three classes: Segment-
Control (noted SC), ConveyerControl (noted CC) and Cross-
ingZoneControl (noted CZC). Interactions between classes
are defined using the following rules:

1) Upon receiving a MOVE command, a CC has to require
(using DEM message) an authorization provided by the SC
of the segment it wants to get in (if different from the
current one). When it gets a positive answer (AUT mes-
sage), it may come in.

2) This authorization may be refused (REF message),
then, the conveyer must get into the crossing zone.

3) A conveyer stopped in a crossing zone is not consid-
ered to be in any segment.

4) The SC replies AUT when it is empty.
5) The SC replies REF when it contains a conveyer. It
then stores the query in a local FIFO to reactivate the
demanding conveyer when it is empty.

6) The CC sends DEM when it wants to leave a segment,
just before entering in a new one.

7) The CC leaves the crossing zone when it gets a GO
message from the SC. This message is sent when the
conveyer occupying the segment leaves it.

8) When a CC leaves a segment (to get into another one
or to get into a crossing zone), it notifies the correspond-
ing SC by means of an OUT message. This message is
also sent when a CC leaves a CZC.

9) When entrance in a segment is refused, CC checks
(message EMPTY) if the CZC it has to get in is empty.

10) The CZC answers to EMPTY using OK (it is empty) or PB
(it already contains a conveyer).

11) When PB is sent by a CZC, the CC sends ALARM to other
conveyers and the entire system stops in an error state.
Figure 4 presents the static structure of the system as an

UML class diagram.

Figure 4 : The UML class diagram of the conveyer system.
Let us illustrate the rules exposed in Section 4.1. with

UML sequence diagrams. The one of Figure 5 corresponds
to a first scenario. Conveyer «c» located in segment «1»
wants to get into segment «2». It sends DEM and gets AUT,
enters in segment «2» and sends OUT to segment «1».

Figure 5 : Sequence diagram of scenario 1.
The UML sequence diagram of Figure 6 corresponds to

a second scenario. A conveyer «c1», located in segment
«1», wants to get into segment «2» where another conveyer

the main LfP-FSM a class role a class method

Figure 2 :  Graphical representation of class components.

S1 S2 SN

Z1 Z2 ZN-1

...

Command

server   1..*

DEM()
<<oneway>> OUT()
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<<oneway>>  MOVE()
<<oneway>>  GO()
<<oneway>>  ALARM()

CC

EMPTY()
<<oneway>> OUT()

CZC

1
client 1

client

1..*    server

  client  1..*
channel_command

server  1..*

sender   1 1..*   receiver

SC_channel
CZ_channel

CC_channel

c:CC 2:SC 1:SC

DEM

AUT
OUT



«c2» is located. When «2» refuses entrance, «c1» gets into
the crossing zone «z» after having checked if it is empty.
When «c2» leaves «2», «c1» is waken up by «2» and leaves
«z».

Figure 6 : Sequence diagram of scenario 2.

4.2. The LfP Specification

In order to build the LfP diagrams we reuse information
found in the UML models.

4.2.1. Description of the System

Figure 7 presents the main LfP diagram. The static
structure of this is derived from the UML class diagram
(Figure 4). It declares three classes (corresponding to the
UML ones) and four media. The first three media corre-
spond to the three UML associations and specify the com-
munication protocol between classes as well as their
interaction contract with the media. The last media is a local
FIFO used by SC instances to store unsatisfied queries.

Figure 7 : The LfP main diagram of the conveyer example.
The declarative part of the LfP main diagram consists

of:
• general model information. Model name, author, ver-
sion, associated UML model.

• declaration of constants and new data types. NBC, NBS
and NBZ constants respectively define the number of
conveyers, segments and crossing zones. A new type
(station) defining valid station identifiers. Two enu-
merated types (start_bound and end_bound) repre-
senting valid bounds of a segment in terms of stations
(stations are numbered). We assume here that there is
only one station per segment. This may be changed
without modifying the structure of the LfP model.

• declaration of static class instances with their initial
context. We find two conveyer instances, four segment
instances and three crossing zone instances.

• a list of properties to be verified for the system. These

declarations belong to the property view of the system.
We provide some interesting properties in Section 4.3.

4.2.2. Description of the SC Class

Figure 8 presents the SC class. The declarative part spec-
ifies for each connected media binder, the list of accepted
messages (marked as in) and possible outgoing messages
(marked with out). According to the sequence diagrams of
the two scenarios (Figure 5 and 6), a SC class instance may
receive an entrance demand (DEM) or a notification message
(OUT). A segment controller may reply to the demanding
conveyer controller using two alternative messages: en-
trance authorization (AUT) or entrance reject (REF). It also
sends GO to let a waiting conveyer come in from a crossing
zone.

 

Figure 8 : The SC (Segment Control) class.
The main LfP-FSM (Figure 9) specifies the execution

contract of the SC class. Its purpose is to merge together the
two alternative behaviors corresponding to the execution
scenarios from Figure 5 and Figure 6.

The main LfP-FSM states that DEM and OUT methods
should be mutually exclusive. Moreover, OUT can be exe-
cuted only if the segment contains a conveyer (segment
state is full). 

The main LfP-FSM declares three local variables (dupli-
cated in any class instance): status represents the execu-
tion state of a class instance (empty or full); index stores
the number of pending demands; HID represents the class
instance identifier. HID corresponds to a unique instance
identifier.

When constructing new class instances, all context vari-
ables have to be initialized.

Figure 9 : The main LfP-FSM of the SC class.
Figure 10 presents the DEM method LfP-FSM. It defines

conveyer_ID, a local variable used to store the identifier of
a demanding conveyer.

The DEM execution contract has two branches:
• When the segment is empty, access is granted and the
segment state changes to full.

• When the segment is full, the query is stored in a FIFO
media for further process and the index of pending
demands is incremented. Then, a negative response
(REF) is sent back to the conveyer.
Communication with the FIFO has oneway asynchro-

nous message passing semantics.
Figure 11 presents the LfP-FSM of the OUT method. As

for DEM, it also contains a local variable to store conveyer

c1:CC 1:SC 2:SC

DEM

c2:CC z:CZC

OUT

GO

REF

EMPTY

OK

OUT

OUT

SC_channel

CC_channel

CZC_channel

FIFO_channel

SC CC CZC
  model_name := ’conveyeurs’ ;
  author := ’Dan Regep’;
  version := 0.0.1;
  comments := ’’;
  UML_model := ’conveyers.mdl’;

  const NBC := 2;
  const NBS := 4;
  const NBZ := 3;
  type station is integer range 1..NBS;
  type start_bound is integer (1,2,3);
  type end_bound is integer (1,2,3);

static instances:
  CC with HID in range 1.. NBC;
  SC with HID in range 1..NBS ; 
  CZC with HID in range 1..NBZ;
properties:

messages:
 from SC_channel.server
   in DEM();
   in OUT();
   out AUT();
   out REF()
   out GO();
 from FIFO_channel.in
   out WRITE (in opaque data);
 from FIFO_channel.out
   in READ (out opaque data);
internal_methods:
procedures:

context :
  local status is (’empty’, ’full’);
  local index := 0 is integer range 0..NBC; 
  local HID is integer range 1..NBS;

OUTD E M

FULL_OR_EMPTY

<status = 'full'>

BEGIN



identities. Behavior of the OUT method consist of two alter-
native branches:

• If there is no pending request (index = 0) then status
of the segment is changed to empty.

• If there is at least one pending requests, the oldest
demand is retrieved from the FIFO and a GO message is
forwarded to the corresponding conveyer.

Figure 10 : LfP-FSM of the DEM method.
Due to space reasons the LfP representations of CC and

CZC classes are not presented in this paper.
 

Figure 11 : LfP-FSM of the OUT method.

4.2.3. Description of the SC_channel media

The structure of the SC_channel media is presented be-
low in Figure 12. Its context consists of two local variables:
client_ID represents the identifier of the connected CC
class and message is used to encapsulate the contents of an
incoming message. 

Figure 12 : LfP-FSM of the SC_channel media.

SC_channel has two binders (client and server)
through which it is connected to a client (a CC class in-
stance) and to all server instances together (all CS class in-
stances). The connected conveyer is the client (client
multiplicity is one) and all connected segments are servers
(multiplicity of the server binder is marked as all). 

The media may transport several messages. Possible
messages and their parameters are enumerated for each
binder. The communication is asynchronous through both
binders.

When receiving a message through the client binder, the
media dispatches it to the concerned server. This is
achieved using a simple copy of the message contents from
the incoming binder to the output one.

In order to match an incoming message from a server,
the message destination should be identical to client_ID.

4.3. Properties to be Verified

Two kinds of properties may be considered with regards
to modular specification:

• properties local to a module,
• properties global to the complete specification.

Local properties concern the internal behavior of a com-
ponent independently from its environment. If we consider
the SegmentControl class, local properties express the link
between the demand of a conveyer and the answer of the
segment, such as:

i. if SegmentControl gets request to enter an empty seg-
ment, it answers «OK» to the conveyer,

ii. if SegmentControl gets request to enter a full seg-
ment, it answers «REF» to the conveyer.
Global properties concern the behavior of the complete

system; verification thus requires the specification of the
entire system. An example of such a property is :

iii. the system is deadlock free.

5. FORMAL VERIFICATION

LfP specifications cannot be used «as is» to perform for-
mal verification. Thus, a translation into a verification lan-
guage is necessary. The generated formal specification is
not as easy to read as the one in LfP, but handles automated
formal verification.

 It is usually impossible to perform formal verification
without abstraction and reduction of the system at the for-
mal level. However, as most abstractions and reductions
rely on the semantics of the property to be verified, we pro-
duce one formal specification per property to verify. Thus,
the obtained formal specification is equivalent to the LfP
one regarding the considered property.

We choose well formed colored Petri net [3] because, in
addition of excellent capabilities for the description of con-
current systems, they support both structural and behavioral
verification methods.

Let us use the conveyers example to illustrate validation
of the behavioral properties stated in Section 4.3. To vali-
date this system, we use CPN-AMI, a Petri net based CASE
environment [11].

5.1. Colored Petri Nets

This section informally presents colored Petri nets.
A colored Petri net is a 5-uple <P, T, Pre, Post, Types,

context :  local conveyer_ID := 0 is integer range 0..NBC;

FIFO_channel.in

msg := 'WRITE';
msg.data := conveyer_ID ;

<status = 'full'>
index++ ;

<status = 'empty'>
status := 'full';

msg := 'AUT'
msg.discriminator.destinationID:=
      conveyer_ID;

FINAL

SC_channel.server

conveyer_ID :=
    msg.discriminator.sourceID;

<msg = 'DEM'>

BEGIN

msg := 'REF';
msg.discriminator.destinationID:=
     conveyer ID;

SC_channel.server

SC_channel.server

context :  local conveyer_ID :=0 is integer range 0..NBC;

<index = 0>
status := 'empty;

SC_channel.server

BEGIN
SC_channel.server

FINAL

<msg = 'OUT'>

<index > 0>

msg := 'READ;
conveyer_ID := msg.data;

index --; FIFO_channel.out

msg := 'GO';
msg.discriminator.destinationID := 
      conveyer_ID; FINAL

context :
  local client_ID is integer range 1..NBC; local message is opaque;

binders:
  client: asynchronous ;
   type msg.discriminator is
       sourceID : integer range 1..NBC;
       destinationID: integer range 1..NBS;
             multiplicity := 1 ;
             messages: in  DEM ();
                               in  OUT ();
                              out AUT ();
                              out REF ();

 server: asynchronous;
   type msg.discriminator is
       sourceID : integer range 1..NBS;
       destinationID: integer range 1..NBC;
              multiplicity := all ;
              messages: out DEM ();
                                out OUT ();
                                 in  AUT ();
                                 in  REF ();

BEGIN

client

message := msg.#all; msg.#all := message;

server

server

 message := msg.#all;msg.#all := message;

<msg.discriminator.destinationID = client_ID>
client



M0> where:
• P is a set of places (depicted by circles). 
• T is a set of transitions (depicted by rectangles).
• Pre[t] is the precondition function for transition t.
• Post[t] is the postcondition function for transition t.
• Types is the set of basic types. A basic type is a finite
set.

• M0 is the initial marking.
Figure 13 depicts a simple colored Petri net with 3 plac-

es (P1, P2 and P3) and 2 transitions (t and t1).
 

Figure 13 : Simple colored Petri net example.
To each place p, a domain Dom(p) is associated: Dom(p)

is the cartesian product of some basic types. In Figure 13,
basic classes are Id, Value1 and Value2. The domain of P1
is the cartesian product of Id and Value1, the one of P2 is
the cartesian product of Id and Value2 and the one of P3 is
the cartesian product of Id, Value1 and Value2. Dom(p)
corresponds to the set of token color that place p can possi-
bly contain.

A marking M(p) is associated to each place p: M(p) is a
multi-set over Dom(p). Therefore, a marking M is the func-
tion that associates a marking to each place p of P. An ele-
ment of a marking in a place is called a token. In Figure 13,
the initial marking associates:

• two tokens with color <1, 3> to P1, 
• tokens <1, 5> and <2, 7> to P2,
• the empty multi-set to P3.

Pre and Post functions describe how a marking is modi-
fied when an action is performed. Since actions are associ-
ated to transitions, instead of «an action is performed» we
say: «a transition is fired». 

To each transition, a set of variables Var(t) is associated.
Each variable is defined over a basic type. In Figure 13,
Var(t) = {i, j, v1, v2} and Var(t1) = {i, v2}. Variables i and
j are defined over the basic class Id, variable v1 is defined
over Value1 and variable v2 is defined over Value2

 Let us call a binding of transition t the association of a
value to each variable of Var(t). Let x a binding of t,
Pre[t][p, x] returns a multi-set over Dom(p). A transition t
can be fired for a marking M with a biding x iff:

• constraints over the binding are satisfied (they are called
guards), [ i < j ] is a guard associated to transition t in
Figure 13.

• Pre[t][p, x] is included in M(p) for all p of P,
Post[t][p, x] also returns a multi-set over Dom(p). If t

can be fired for binding x, then a new marking M' can be
computed: M'(p) = M(p) - Pre[t][p, x] + Post[t][p, x]. In or-
der to synchronize different values, successor (v++n) and
predecessor (v--n) functions are defined (see postcondition
of t in  Figure 13).

In Figure 13, many bindings can be found for transition
t, like i = 3, j = 5, v1 = 7, v2 = 6. However, t cannot be fired

for this binding since <3, 7> is not a token in P1 for the ini-
tial marking. The following binding allows t to be fired : i
= 1, j = 2, v1 = 3, v2 = 7 (token <1, 3> belongs to P1 and
token <2, 7> belongs to P2, there is no precondition for P3
and the guard is satisfied since i < j). When t has been fired
a new marking M1 is computed:

• P1 contains the token <1, 3>,
• P2 contains the token <1, 5>,
• P3 contains the token <1, 4, 7>.

From this new marking no binding can be found for t to
be fired (the only possible binding would be i = 1, j = 1, v1
= 3, v2 = 5 and it does not satisfy the guard i < j). Figure 14
shows the reachability graph of the net figure Figure 13.
The double circled state corresponds to the initial marking
(M0) of the net.

 

Figure 14 : Reachability graph of the simple colored Petri net.

5.2. From LfP to Colored Petri Nets

We have to ensure that results computed for the Petri net
can be translated into LfP terms. Therefore, the translation
process has to preserve the component structure of LfP
models. This strategy also enables modular verification
when it is possible (e.g. for local properties).

Therefore, we work at the module level (modules are de-
duced from LfP classes). We then compose them to produce
a complete Petri net of the system.This procedure has two
main steps:

• Generation of Petri net modules from LfP-FSMs.
• Composition of Petri net modules

To illustrate the translation procedure, we consider the
specification of the SegmentControl.

5.2.1. Generation of Petri Net Modules

Structure of the Petri net. To obtain the structure of the
Petri net, we consider LfP-FSM of the input model:

• In the Main-FSM, transitions corresponding to methods
are replaced by the corresponding LfP-FSM.

• Places initiating methods are identified with the BEGIN
place in the corresponding LfP-FSM

• Method output places are identified with FINAL places
in the corresponding LfP-FSM.

• We preserve at the Petri net level, names of LfP places
and transitions. Unnamed LfP places and transitions are
given an arbitrary name in the Petri net. Naming is
requested by some verification tools.
If we consider the SegmentControl class, we obtain the

Petri net of Figure 15. Black places and transitions are those
of the Main-FSM. Transitions DEM, t1, t2, t3 and places
P1, P2 describe the method DEM. Transitions OUT, t4, t5 and

t [i < j]

P 3DP3

P 2 DP2

<1, 5>, <2, 7>

P 1 DP1

2*<1, 3>

t1

class
  Id is 1..3;
  Value1 is 1..10;
  Value2 is 4..15;
domain
  DP1 is <Id, Value1>;
  DP2 is <Id, Value2>;
  DP3 is <Id, Value1, Value2>;
var
  i, j in Id;
  v1 in Value1;
  v2 in Value2;

<i, v2><i, v1> <j, v2>

<i, v1++1, v2>

P1 = {2*<1, 3>}, P2 = Ø, P3 = ØP1 = {<1, 3>}, P2 = Ø, P3 = {<2, 7>}

P1 = {2*<1, 3>}, P2 = {<1, 5>}, P3 = Ø

P1 = {2*<1, 3>}, P2 = {<2, 7>}, P3 = Ø

P1 = {<1, 3>}, P2 = {<1, 5>}, P3 = {<1, 4, 7>}

P1 = {2*<1, 3>}, P2 = {<1, 5>, <2, 7>}, P3 = Ø

t (1, 2, 3, 7)

t1 (1, 5)

t1 (2, 7)

t1 (1, 5)

t (1, 2, 3, 7)

t1 (2, 7)

t1 (1, 5)



place P3 describe the behavior of method OUT.   Transition
DEM (respectively OUT) are shared by the Main-FSM and the
method DEM (respectively OUT). Channel_SC_server and
FIFO_channel_out correspond to media.

The verification we consider does not matter with the
implementation of communication channels. We may thus
abstract their specification with a single place. However it
requires their implementation to respect the following prop-
erty: channels are deadlock and loss free. This assertion
has to be inserted as an implementation note used by code
generators.

Color-domains, valuations and initial marking. Once
the structure of the Petri net obtained, it is necessary to de-
fine variables management using color classes and do-
mains, variables, valuations and guards. A color domain
representing the information required to determine the state
of the system is associated to places in the Petri net model.

We thus consider the variables identified in FSMs:
• Information depicted by variables declared in the main
FSM is associated to place,

• Places derived from methods are enriched by local vari-
ables.

• Information in a channel contains three parts : the
source, the destination and the value of the message.

.

Figure 15 : Petri net of the SC (SegmentControl) class. 
Let us illustrate this on the Petri net in Figure 15 and the

corresponding declarative part in Figure 16. Places of the
main FSM carry: status of a segment (empty or full), iden-
tity of the segment (integer between 1 and 4) and an index
that indicates the number of conveyers waiting for segment
release. This information is represented by the StatusSeg-
ment domain. Places derived from methods also contain the
identity of the conveyer willing to enter the segment.
Therefore the new domain, StatusSegmentLocal, is de-
fined. Each of the two communication channels has its own
domain (T_channel_SC and T_channel_FIFO). 

The following declaration contains the classes, domains
and variables that are necessary for the description of the
SegmentControl class.

Figure 16 : declarative part of the SC (SegmentControl) class.
Arcs valuation and transitions guards are also deduced

from the LfP specification. Let us consider transition DEM in
Figure 15.

To be fired it requires one token from place
FULL_OR_EMPTY (domain StatusSegment) and one token
from channel_SC_server (domain T_channel_SC). The
arc from place FULL_OR_EMPTY to DEM is valuated by the tu-
ple <status,HID,index>; the one from
channel_SC_server to DEM is valuated by the tuple
<msg_channel, conveyerID,HID>.

So, to fire DEM, a message must be sent to a segment
identified as full or empty (this segment is not responding
to a request) and HID variables must be the same in both val-
uation. The token stored in the DEM output place is a combi-
nation of the inputs: <status,conveyerID,HID,index>.

Transition t3 authorizes (t2 refuses) the entrance in the
segment; t3 has the following guard [status = empty] (re-
spectively [status = full] for t2). These guards corre-
spond to the preconditions defined in the LfP-FSM
(Figure 10).

This way, places domain, arcs valuation and transitions
guard are computed from the LfP specification. Petri net of
Figure 15 and declaration in Figure 16 represent the com-
plete Petri net specification of SegmentControl Class.

The initial marking of the Petri net corresponds to the
static instantiation of classes. For SegmentControl, we in-
dicate which are the full segments; for ConveyerControl
we indicate the segment identifier where each conveyer is
and, we also indicate that all CrossingZoneControl in-
stances are empty.

Petri net reduction. As the Petri net is automatically
synthesized from the LfP specification, its structure may be
not optimized. Some reductions are possible regarding the
class of properties to verify. These reductions concern the
Petri net structure. Therefore, combinatorial explosion of
the corresponding state graph is reduced and verification
becomes easier. 

If we consider deadlock freeness, reduction techniques
presented in [6] can be applied. If we consider verification
of temporal properties, reduction techniques presented in
[16] are necessary.

The first technique is compatible with deadlock freeness

 StatusSegmentLocal

 [status = full]

BEGIN
 StatusSegment

 <full,1,1,0>,<empty,2,0>,<full,2,3,0>,<empty,4,0>

 FULL_EMPTY

StatusSegment

 DEM
 OUT[ status = full  and  

msg_channel = OUT]

StatusSegmentLocal

 [ index = 0]

 FIFO_chanel_out
 T_channel_FIFO

 [ index > 0 ]

 <status,HID,index--1 >

< msg_FIFO,

 <GO,conveyerID,
 HID>

 <empty,

<status,
conveyerID,
HID,index >

< msg_channel,
conveyerID,HID>

<status,

 <status,
  HID,
 index >

 <status,
 HID,index >

<status,
HID,index >

AUT,conveyerID,
ID>

 <status,conveyerID2,   
  HID,index >

 <status,conveyerID,
 HID,index++1 >

 <status,conveyerID,
 HID,index >

 <status,
ID,index >

 HID,index >

HID,
index >

 <status,conveyerID,

  <status,conveyerID,
   HID,index >

 HID,index >

channel_SC_server
 T_channel_SC

 <full,
 HID,
 index >

 conveyerID,HID>

<REF,conveyerID,HID>

 <status,
  conveyerID,
 HID,
 index >

<msg_channel,
conveyerID,
HID>

 [msg_chanel = DEM ]

 DEM method

OUT method

 P1

 P2

P3

 t1

t2

 t3

t4

 StatusSegmentLocal

 <WRITE,conveyerID,HID>

 [status = empty]

 t5

<status,
 conveyerID,
 HID,
 index >

CLASS
  Tstatus is [empty,full];
  TCC is 1..2;
  TSC_CZC is 1..4;
  Tindex is 0..2;
  Tmsg_channel_SC is [OUT,DEM,AUT,REF,GO,VIDE,OK,PB];
  Tmsg_FIFO_channel is [ WRITE,READ ];
DOMAIN
  StatusSegment is <Tstatus,TSC_CZC,Tindex>;
  StatusSegmentLocal is <Tstatus,TCC,TSC_CZC,Tindex>;
  T_channel_SC is <Tmsg_channel_SC,TCC,TSC_CZC>;
  T_channel_FIFO is <Tmsg_FIFO_channel,TCC,TSC_CZC>;
VAR
 status in Tstatus;
 conveyerID2 in TCC;
 conveyerID in TCC;
 HID in TSC_CZC;
 index in Tindex;
 msg_channel in Tmsg_channel_SC;
 msg_FIFO in Tmsg_FIFO_channel;



property (property  iii.), the second one is compatible with
Properties  i. and  ii. Some reductions, as the following one,
belong to the two techniques. The rule we apply aims to
identify two transitions (ta and tb) where the bindings of tb
depends only on the bindings of ta. Such a reduction is pos-
sible between transitions DEM and (t1 and t3).

Figure 17 shows the reduced Petri net. Black transitions
replace the three ones that have been reduced. The place be-
tween DEM, t1 and t3 has been suppressed.

Figure 17 : Reduced Petri net of the SC (SegmentControl) class.

5.2.2. Composition of Petri Net Modules

Composition. The composition of modular Petri nets is
obtained by identification of channel binding points. In our
case, as each channel is represented by a single place, we
perform the fusion of all the places representing the same
channel.

Abstraction of system environment.To verify our sys-
tem, we need a representation of its environment. At the
verification level, this environment consists of the Com-
mand class (Figure 4) and channel_command. 

Due to possible communications between Command and
CC classes, this environment can be represented by means
of a message generator coming from the communication
channel. Command sends all possible messages since we
have no constraints on it. Therefore, even if we consider a
particular initial configuration, the evolution of the system
leads to all possible configurations.

The complete model.The assembled model, obtained by
composition of reduced modules, contains 20 places, 28
transitions and 92 arcs.

5.3. Verification of properties

We consider two types of properties: local and global.

5.3.1. Local properties

Let us consider SegmentControl with properties  i. and
ii. defined in Section 4.3. The formal language we use to
express such properties is a temporal logic [5], properties  i.
and  ii. are interpreted as :

•  i.: if transition DEM is fired with the binding (status =
empty, conveyerID, HID, index, msg_channel = DEM)
then place channel_SC_server will eventually contain
the token <AUT,conveyerID,HID>,

•  ii.: if transition DEM is fired with the binding (status =
full, conveyerID, HID, index, msg_channel = DEM)
then place channel_SC_server will eventually contain
the token <REF,conveyerID,HID>
To verify such a property, it is not necessary to consider

the entire system specification. The Petri net of ControlSeg-
ment class associated to an abstraction of its environment
with an adapted initial marking is sufficient.

We use PROD [20], a model checker dedicated to col-
ored Petri nets and integrated as a component in CPN-AMI
[11] to verify the temporal logic specification of these por-
perties. These properties are verified. Once all classes indi-
vidually verified, we can consider global properties.

5.3.2. Global Properties

We now want to verify property iii. Theorem provers are
able to check such a property without considering a specific
instantiation of the system (e.g. a given number of segments
and conveyers). However, such proofs cannot be automat-
ed.

To enable automated proofs based on the reachability
graph, we have to instantiate the system. Such instantia-
tions can be deduced from the expected size of the system.
A well accepted strategy is to start with a small number of
resources and components to check if the property is cor-
rect. Then we use realistic dimensions of the system for a
safer verification.

So, let us start with two conveyers and four segments.
We first compute the reachability graph of the complete
Petri net and look for terminal nodes (i.e. specification deal-
docks). We also used PROD to evaluate this property.

The computed reachability graph holds 3072 nodes,
6209 arrows and 33 terminal nodes. Thus, our specification
is not correct. PROD helped us to extract a path between the
initial state and one of the terminal nodes. This path builds
a scenario explaining why our specification is not deadlock
free.The scenario is the following :

• Initially conveyer 1 is in segment 1 and conveyer 2 is in
segment 3,

• Conveyer 2 asks for segment 2 and enters in it.
• Conveyer 1 then asks for segment 2 and is not allowed
to enter it.

• Conveyer 1 therefore asks to enter in crossing zone 1.
• It is allowed to enter this crossing zone which is imme-
diately set to occupied even if conveyer 1 has not yet left
segment 1.

• Conveyer 2 then asks for segment 1, it is not allowed to
enter since conveyer 1 has not yet left the place. 

• Therefore it asks to enter crossing zone 1. This raises a
problem and the system stops.
This deadlock is due to asynchronous communication

between classes : conveyer 1 has not yet considered the au-
thorization from the crossing zone since the crossing zone

 StatusSegmentLocal

 [status = empty &&
 msg_channel = DEM] EM_t3

 DEM_t1

 BEGIN

 StatusSegment
<full,1,0>,<empty,2,0>,<full,3,0>,<empty,4,0>

FULL_EMPTY
 StatusSegment

 OUT [ status = full  and  
 msg_channel = OUT]
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 HID,index >

 <status,
 HID,index >

 

 

 channel_SC_server
T_channel_SC

 <WRITE,conveyerID,HID>

<REF,conveyerID,HID>

 [status = full && 
 msg_channel = DEM]

P2

t4

t5

3



considers it is already in. Then, our specification does not
ensure that the number of occupied segments and crossing
zones remain equal to the number of conveyers. The verifi-
cation process shows an implicit property that should be ex-
plicitly expressed in the LfP verification view.

To solve this problem, a communication protocol be-
tween classes has to ensure atomicity of the following ac-
tions: 

• a crossing zone (or a segment) accepts a conveyer’s
demand,

• this conveyer gets into the crossing zone (or segment),
• the leaved crossing zone (or segment) moves to the
empty state.
A transactional system should ensure such a property.

Thus, the systems designer has to update the LfP specifica-
tion according to this observation. Such an operation corre-
sponds to what we called «formal debug» in Figure 1.

6. CONCLUSION

In this paper, we have presented an evolutionary proto-
typing methodology that promotes formal verification and
debugging of a specification as well as code generation of
distributed programs.

This methodology relies on LfP: a formalism offering
structuration capabilities and having a precise semantics
suitable for the description of interaction between compo-
nents of an embedded distributed system. The strong se-
mantical definition of LfP aims to eliminate problems
observed on a standard notation such as UML when it
comes to code generation and formal verification. Howev-
er, LfP remains connected to UML since we consider it as
an additional diagram. Some parts of this diagram may be
deduced from classical UML diagrams but system design-
ers have to provide new information regarding cooperation
between classes in the system.

We illustrated our methodology on a small example: a
conveyer system. This example showed that non-trivial er-
rors can be detected on a system that appears to be correctly
described. The detected problem deals with sophisticated
behavioral aspects of the system which are due to some un-
specified aspects on the system (here, some communication
issues were not properly stated).

Based on the study presented in this paper, it appears
that our methodology has some «nice» capabilities when
designing a system:

• It is connected to a standard UML-based approach. In
our methodology, UML design fits the early conception.

• LfP is used as a basis for detailed description of the sys-
tem and a basis for code generation and formal verifica-
tion.

• Our transformation techniques preserve a strong corre-
spondence between the model level (LfP), the formal
level and the program level.

• The use of formal methods to check properties may be
hidden to the end user. Then, it can be used by engineers
having a low knowledge on formal methods.

• Formal verification techniques enable formal debug at
the model level. Then, if we assume that no bug is intro-
duced by code generators, system implementation
should behave according to the verified properties. 
Our methodology is partially implemented in CPN-

AMI, a Petri net based CASE environment.
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