
A Survey: Applying Formal Methods to a Software Intensive System

Adriaan de Groot� and Jozef Hooman

KU Nijmegen

Fabrice Kordon, Emmanuel Paviot-Adet, and Isabelle Mounier

Laboratoire d'Informatique de Paris 6/SRC

Michel Lemoine and Gervais Gaudiere

ONERA Cdt/DPRS/SAE and ENAC - DMI

Victor L. Wintery z and Deepak Kapurx

Sandia National Laboratories

Abstract

This paper surveys various formal approaches that

could be used to facilitate the development of the train

control system described in BART case study. This

system is interesting because train control must take

into account complex behaviors, positional uncertain-

ties, noise, continuous aspects, and a prede�ned com-

putational architecture. The approaches discussed are

works in progress and are not complete at the time of

the writing of this paper.

1 Motivation

The rapid advance of computer technology has lead

to increasingly high consequence applications across

the technology spectrum. More and more, systems

are falling into two distinct categories (1) those which

are driven by time-to-market considerations, and (2)

those having dependability as a dominating concern.

This paper focuses on systems belonging to the latter

category.

When developing a high consequence system, sig-

ni�cant a priori evidence must be provided that the

system will meet its dependability requirements. For

complex systems having high (or ultra-high) depend-

ability requirements (e.g., the likelihood of a failure

occurring per operational hour � 10�9) testing alone

is generally insuÆcient to provide the necessary level

�Supported by NWO-GBE/SION project 612.062.000
yContact Author
zThis work was supported by the United States Department

of Energy under Contract DE-AC04-94AL85000. Sandia is a

multiprogram laboratory operated by Sandia Corporation, a

Lockheed Martin Company, for the United States Department

of Energy.
xDeepak Kapur was also partially supported by NSF grant

nos. CCR-9996150 and CDA-9503064.

of assurance. For such applications, formal methods

are considered to be the most promising approach for

providing the (ultra)high assurance necessary to con-

�dently �eld the developed system.

Because formal methods o�er such promise, gov-

ernments in a growing number of countries explicitly

require some degree of formal methods to be applied

to the development of high consequence systems (es-

pecially safety critical systems whose failure will result

in the loss of human life).

At present, formal methods have not gained the

level of use that many had hoped for. There are sev-

eral reasons for this: (1) programming languages and

tools supporting traditional software engineering prac-

tices have lead to signi�cant improvements in software

development, (2) formal methods-based development

approaches typically require a deep understanding of

various types of logics, related notations, and calcu-

lations (e.g. uni�cation, inference, etc.), thus making

them somewhat inaccessible to the general program-

mer/developer, (3) it is not uncommon for a formal

speci�cation to approach or even exceed the size of

the program that implements it, and (4) in practice,

it has been very diÆcult to scale formal methods to

large systems.

Many people in industry view formal methods as

still being in the research stage and are therefore not

convinced that the cost of their application to a real

project can be justi�ed. In practice, testing can often

demonstrate reliability levels acceptable to short-term

industrial goals (e.g., a short-term view of system re-

liability may conclude that it is \unlikely" for a sys-

tem having a reliability of 10�6 to experience a fail-

ure in the near future). However, as the consequence

of failure increases, companies are increasingly �nd-

ing themselves developing products having properties

that are in conict with such \short-term" corporate

philosophies.

At present, institutions conducting research in for-

mal methods (typically universities) have been largely

restricted to using \toy problems" or case studies to

demonstrate the maturity and/or appropriateness of a

formal method to a particular aspect of a problem or

problem domain. Toy problems are problems whose

primary objective is to demonstrate the capability of

a method. They typically represent highly idealized

problems and lack the complexity that would allow

them to demonstrate that a method can be scaled to

real world problems. In contrast, case studies are de-

rived from real world problems and to a reasonable

extent reect the complexity and messiness present

in problems being addressed by industry. Research

in the application of formal methods to case studies

represents a logical next-step in the development of

an industrial strength formal method. Unfortunately,

only a handful of case studies have been made avail-

able to the formal methods community. Two of the

most well-known case studies are the Production Cell

[7] and the Steam Boiler [1], however, case studies of

this caliber are rare.

There are numerous reasons why producing a case

study is unattractive to industry. First, the feedback

cycle (i.e., the time from when the case study is writ-

ten to when the research community presents results)

is typically on the order of a year or more. This is

simply too slow for the timetables of many industries.

Additionally, there are often proprietary and legal is-

sues surrounding the development of case studies (e.g.,

the release of a product speci�cation to a competitor).

Given such constraints, it is rare for a company to

consent to the development of a case study based on

a system that is currently under development. This

leaves case studies for systems that have already been

developed. While such case studies are of interest to

the research community, they are typically not of im-

mediate interest to industry. This is evidenced by the

diÆculties encountered when trying get industry to

devote the necessary resources in order to develop such

a case study.

The BART Case Study [17] focuses on the acceler-

ation and speed control for the commuter trains run-

ning in the San Francisco bay area. It resulted from a

unique set of circumstances in which Sandia National

Laboratories was engaged to evaluate safety criteria

for the new train control system that was being devel-

oped for the Bay Area Rapid Transit (BART) system.

At the corporate level, Sandia recognizes the need for

research in high consequence software and system de-

velopment and was therefore willing to devote the nec-

essary resources in order to produce the case study.

At the time this case study was developed, the con-

tract for BART had already been awarded (minimiz-

ing though not eliminating the concern regarding pro-

prietary information) and the system was about 8 - 12

months away from being implemented.

2 Overview of the BART Case

Study

BART is a train system that runs through the San

Francisco Bay Area. The use of the BART system

was beginning to exceed its capacity and a new sys-

tem was needed to address this problem. Because

BART runs through downtown San Francisco and un-

der the bay, solving the capacity problem by laying

additional track was cost prohibitive. The solution

that was accepted addressed the capacity problem by

spacing the trains closer together. In the old system,

trains were typically spaced about 2 minutes and 30

seconds apart. In the new system trains would be

spaced around 2 minutes apart. Because train acci-

dents (e.g., collisions or derailments) can result in loss

of life, the BART controller is considered to be a high

consequence system.

There are many constraints that need to be con-

sidered when controlling a train. Trains can take a

long time to stop, track segments have di�erent speed

limits associated with them, signals (set by the en-

vironment) can require a train to stop, a train must

respond to the behavior of the train ahead of it, the

environment can cause a train to derail, and so on

and so forth. A train control system must take all of

these constraints into account in the context of achiev-

ing various system objectives. The primary objective

is safety, followed closely by various other objectives

such as increased capacity, smoothness (e.g., the train

should not oscillate), energy eÆciency, and passenger

comfort. The interaction of these system objectives

and constraints results in a complex high consequence

system.

3 Challenges Posed by the

BART Case Study

Many of today's formal methods are based on the abil-

ity to construct a system model in which transitions

from, or relations between one state and another can

be expressed in a simple fashion. The complexity in

such systems arises from the interaction between these

relations or transitions as well as their ability to sat-

isfy (long-range) system goals. In such a framework,

tools (e.g., model checkers, theorem provers, etc.) can

be e�ectively used to verify properties such as reach-

ability, consistency, liveness, deadlock and so on.

For example, the Production Cell Case Study[7],

describes a robotic system in which simple commands

are given to the various components in the Cell (e.g.,

robot arm, conveyor belt, crane, elevating-rotating ta-

ble, etc.) in order to control the behavior of the sys-

tem. The analysis of the suitability of a command can

be largely accomplished via static reasoning (e.g., if

the robot is turned to the left, it will collide with the

elevating-rotating table).

The BART Case Study di�ers from case stud-

ies like the Production Cell because the suitability of

a transition (e.g., commanding a particular acceler-

ation) must be reasoned about with respect to long

range objectives. For example, in the worst case,

a train traveling at 80 m.p.h. on a continuous 4%

downgrade will take over 3 miles and 4 minutes to

stop! Thus, selection of an acceleration value can have

far reaching consequences. Simple models of a train's

state space can be constructed, but these models tend

to be extremely large. Further increasing the size of

such state spaces is the presence of noisy transmission

of commands (i.e., an acceleration command may not

be received by a train).

Additional aspects of BART that contribute to

the complexity of models are positional uncertainties

which are de�ned in probabilistic terms and the pres-

ence of an existing infrastructure (including comput-

ers) that restricts the solution space, giving the case

study an \evolutionary" dimension.

Most of the widely used formal methods ap-

proaches have diÆculty dealing with (1) continuity,

(2) behavior, and (3) probability. The BART case

study contains all of these aspects and is therefore an

interesting case study to benchmark the e�ectiveness

of various formal approaches to software development.

4 Analysis of the BART system

We believe that e�ectiveness of formal methods can be

dramatically increased by \tuning" them to a speci�c

domain. The objective is to create a formal frame-

work which makes explicit use of domain knowledge at

the semantic level that is used by the domain experts

themselves. This approach is based on the premise

that domain experts in mature �elds have developed

abstractions and operations that enable them to ef-

fectively develop the systems in which they are inter-

ested. Thus a formal approach to software develop-

ment in such domains should try to take advantage

of this knowledge and experience to the extent that is

possible.

In following subsections, four formal approaches

to this case study are surveyed. This is followed by

a �nal section in which the appropriateness of formal

methods to the development of such systems is dis-

cussed.

4.1 Formal Methods as a Means to

Construct a Correct SRD

As mentioned in previous sections, formal methods

have not shown their ability to tackle the inherent

complexity of real systems. In this section, we demon-

strate that semi-formal and formal methods can be

fruitfully used, at a real scale, to produce a System

Requirements Document (SRD) that meets the fol-

lowing expected qualities:

� lack of ambiguities { every piece of information

used should be precisely de�ned in order to get a

unique and shared semantics.

� completeness { the guarantee that all the needed

information, for instance all the critical events,

are referenced and speci�ed.

� consistency { no contradiction still remains be-

tween speci�ed elements.

Indeed the success key of the development of any

safety critical system is mainly based on a clear and

shared understanding of what the systems should do,

and of what are the constrains it must satisfy.

Elicitation of users' needs: As advocated by the

EAI-632 [15] standard, the �rst step of software or

system development consists of eliciting the needs of

the user. This elicitation can be accomplished using a

variety of methods. In the case of the BART system,

we have used an object-oriented set of notations pro-

vided by the UML [12]. Using this notation, needs of

the user have been captured by a large complex Class

Diagrams that includes both structural aspects and

most of the constraints that the BART system must

satisfy.

As usual with UML, the validation phase is a 2-

step one, made of a reverse engineering step transform-

ing the semi-formal diagram into informal texts that

should then be validated by an inspection from the

end user. Not being able to interact with end users, we

have validated the Class Diagram by \cross-reading"

(i.e., comparing the Class Diagram to the case study

text). Note that such cross-reading does not guaran-

tee that the developers have a suÆcient understanding

of the system.

In order to overcome this problem, we have given

a clear semantics to each operation. These de�nitions

were written in Z [14], a formal language based on the

ZF set theory and �rst order predicate calculus. Z

was chosen because it supports the object-oriented as-

pects we have emphasized in our approach. We have

exhibited a set of transformation rules enabling auto-

matic generation of state and operation schemas. Of

course, the operational semantics were produced man-

ually. During this manual step we have been faced

with 2 main problems:

� Giving a semantics to each operation.

� Verifying the operation properties.

The latter is supported by the Z method. It is

not too diÆcult to check that the speci�ed operations

verify (or not) properties such as satis�ability, com-

pleteness and consistency.

The former is much more interesting. Indeed, giv-

ing a semantics to each semi-formal operation has lead

us to either a formal text, and thus its formal veri�-

cation, or to the discovery of some mistakes in the

source class diagram. What kind of mistakes have

been discovered? Most of them are related either to

a misunderstanding of the intuitive semantics of the

operation, or to an incorrect interpretation of relation-

ships between classes.

In other words, giving a formal semantics to semi-

formal models (e.g., UML class diagrams) is a process

that leads to the discovery of many errors. With this,

we concluded the �rst phase. In the second phase, we

focused on: how to use this information to build an

SRD having the expected properties?

Rigorous Construction of an SRD: In this

phase, we used the evolutionary method presented

at [6]. Here, the process of developing an SRD consists

of three major steps:

1. The formal speci�cation and validation of a stable

kernel derived from a subset of our large class

diagram - we begin with a semi-formal model that

is considered as being representative of the kernel

of the system.

2. The formal speci�cation and validation of incre-

ments - we �rst of all extend the semi-formal

model by adding as many attributes, operations,

classes and relationships as necessary, we then for-

malize them, and validate them. Whenever the

validation is not reached, we decrement - erase -

the current increment and move in another direc-

tion.

3. Finally, as soon as we consider the model as com-

plete, we translate both the semi-formal and for-

mal models into an SRD.

The lessons we have learned when using such a

way of elicitating end users' need and their formaliza-

tion are rather obvious. First of all it is mandatory

to develop some semi-formal models that can be eas-

ily understood and validated by end users. This step

also makes the development team more knowledge-

able with the system domain. The second step that

consists of giving the semantics of operations allows

to discover the underlying mistakes the semi-formal

models might have. The third step is a total rebuild

of the SRD because we proceed in a bottom up man-

ner, starting from a stable kernel and arriving to a

large model, which is incrementally produced and val-

idated. Finally, the System Requirements Document

is direct translation of the validated semi-formal and

formal models.

It is important to consider that with such a way

of producing SRD, the development team must have

an answer to any question it can ask the end users.

Indeed, at this point we can guarantee that the SRD

is satis�able, complete, and consistent.

4.2 Discovering the Environment

From a requirements engineering point of view it is es-

sential to know what parts of the system are already

given and what they do. This is very similar to the

SRD's of Section 4.1, but since we are describing what

is there, not what is desired, we proceed slightly di�er-

ently. To this end we concentrate on the trains used by

the BART system. In modeling the train there are no

properties to be veri�ed: the essential question is one

of validation: does the train model we produce match

the actual train in all essential properties? What is

an essential property?

This phase of modeling and validation plays a role

in the entire software process. The models derived

here serve as a context within which the software ar-

tifacts | the software for the station controller | is

expected to perform. Without a valid model of the

train, it is impossible to draw conclusions about the

behavior of the combination of trains and controller.

We contend that a good model of the train helps in

Controller
Design

Model
(validated)

Safety
(verified)

Software
(verified)

Imple-
mentation

Given
Parts

Figure 1: Requirements engineering and the Software

process

the actual design of the controller as well due to the

increased understanding of the train caused by making

the model.

Our ideal software process is shown in �gure 1.

We have performed here only the �rst step | mod-

eling the given components. The remaining steps are

imagined as follows: We model BART as the parallel

composition of two parts: the trains and the station

controllers. We then state safety properties in terms

of the (un)reachable states of that parallel automaton.

In particular, the safety property stated in the infor-

mal speci�cation could be translated (very) roughly

as

8t:pos(Train2) > pos(Train1) + 700ft

The exact formulation of these properties depends on

the formalization we choose; we are inclined to trans-

late a labelled transition system into a set of PVS the-

ories [9] and use an inductive assertion method [11] to

verify the properties of the parallel concurrent compo-

sition of the labelled transition systems.

Modeling objects: To identify what is given we

use a fairly straightforward noun-identi�cation tech-

nique common in UML [12]. This gives us a class di-

agram with classes TrainPhysical (to model the phys-

ical behavior of the train) and TrainController (con-

trolling the motors and brakes of the train). We also

attempt to assign the actions taken by the train to

these classes. This leads to the creation of additional

classes TrainLimiter (to model the way a train accel-

erates smoothly up to 2 mph below the commanded

speed) and TrainSensor (for the communication back

to the station). A class Train is invented to aggregate

objects of these four classes and to handle communi-

cations received from the station. This yields the class

diagram as shown in �gure 2.

We aim to model the behavior of the train as a

whole by attaching to each class in the class diagram

one or more statecharts that express how the objects

t : Timer = 0

1 Limiter

rqv : real = 0
rqa : real = 0

<<msg>> accel(s:real, a:real)
<<msg>> brake(s:real, a:real)
fixup() : real

1

1

Physical

x : real
v : real = 0
a : real = 0

<<msg>> paccel(rqa: real)
<<msg>> pbrake(rqa: real)

rqv : real = 0
rqa : real = 0

<<msg>> accel(s:real, a:real)
<<msg>> brake(s:real, a:real)

Controller

<<msg>> fsbrake()

Train

timer : Timer = 0
lastMOTT : Time = 0

<<msg>> accel(t:Time, s:real, a:real)
<<msg>> brake(t:Time, s:real, a:real)

Sensor

t : Timer = 0

1

Figure 2: Class diagram for BART trains

react to various messages and the passage of time. The

criteria for the class diagram are that each aspect of

the train's behavior must �t sensibly into one of the

classes. As we examine the train's behavior we return

to the class diagram and can add classes, methods,

or attributes as needed to be able to describe that

behavior.

This process led to multiple versions of the class

diagram. For example, only when we considered the

way a train smoothly accelerates up to 2mph below

the commanded speed did it become apparent that

we might need the TrainLimiter class. When the stat-

echarts required to capture the behavior of the limiter

became too complex, we moved that complexity into

an additional method (called �xup) of the class.

Modeling behavior: Including continuous real-

time phenomena in UML diagrams is not covered by

the UML standard at all as yet. Even including timers

is problematical. However, we can draw upon the the-

ory of (hybrid) timed automata to assure ourselves

that such extensions are possible, even if their seman-

tics in the context of UML is unclear.

It seems natural to model the physical behavior of

the train as a continuous real-time process. This in-

troduces additional complications into the statecharts.

We could also have taken the statement from the

informal speci�cation that \the system operates at

half-second cycles" at face value to assume a syn-

chronous system where commands come into e�ect

only at the half-second \tick" of the system. This

would replace continuous variables by variables whose

values change according to a de�nite integral every

half second. Since this synchronous approach seems

implausible, we remain with the asynchronous contin-

uous real-time system, which yields the hybrid real-

time statechart shown in �gure 3.

The extensions in �gure 3 are the real-time actions

Accelerate Brake

[v>0]

pbrake(rqa)
/ a:=rqa

/ a:=rqa
paccel(rqa)

Stopped

[v=0]

[v=0]

/ a:=rqa

paccel(rqa)

/ dx/dt = v
/ dv/dt = a

/ dx/dt = v
/ dv/dt = a/ dx/dt = 0

/ dv/dt = 0

/ a:=0

/ a:=0
/ v:=0

[true] Derailed
/ dx/dt = 0
/ dv/dt = 0

Normal Operation

Figure 3: Statechart for physical behavior

with di�erential equations (shown as actions within

the states) and state invariants (shown as guards

within the states).

Validation results: This approach | �nding

classes and assigning behavior to them | leads us

to a collection of diagrams. The validation of these

diagrams is a matter of insight and careful considera-

tion of the statechart diagrams. For example, in our

original statecharts for the TrainController, there was

no transition for the command accel for every state.

Actually writing the statecharts makes it clear that

the informal speci�cation is incomplete with respect

to this transition, and we need to ask a domain expert

what is intended. This kind of completeness check-

ing is easy to automate and helps remove ambiguities

from the informal speci�cation.

By constructing possible traces of the statecharts

we can examine the possible behavior of the system

and compare this with our intuitions. At the moment

this remains a purely intuitive game.

Conclusion: Using a formal notation helps us or-

der our thoughts, �nd ambiguities and incompleteness,

and provides a secure footing to proceed with the ap-

plication of formal methods to the other part of the

BART system, namely the station controllers.

4.3 Formal veri�cation of speed con-

trol strategy with Petri nets

The train speed controller system has some interesting

features we wanted to deal with:

� time { In our framework (that of Petri nets) time

cannot be modeled as a continuous ow. Since

the train speed controller is structured on cycles,

we discretize time following this structure. The

computer receives trains position and computes

new instructions to be sent to trains.

� physical properties of the system involve complex

phenomena like gravity, friction, etc. Introducing

them in our model disables structural veri�cation

capabilities and dramatically increases the com-

plexity of the underlying state space. For this rea-

son, we used computation tables stored as com-

posed tokens in dedicated places. These complex

behaviors are then pre-computed and integrated

in the speci�cation.

Properties to be veri�ed: The properties we want

to verify deal with stops and collisions:

P1 trains stop at stations and go from one station to

the next one as fast as they can,

P2 trains never collide, even if one train derails.

Modeling: Our modeling procedure relies on LfP,

a UML-like semi-formal notation strongly related to

well-formed Petri nets [2]. LfP is dedicated to code

generation for distributed embedded systems [10] and

formal veri�cation of behavioral aspects in such sys-

tems by means of automatically generated Petri nets

[5].

LfP is a �rst step to the de�nition of a CASE

environment dedicated to the modeling, veri�cation

and code generation for distributed embedded sys-

tems. Since the approach is not yet implemented, we

designed our Petri nets \as if" they were produced

from LfP speci�cations.

We structured the model in three components fol-

lowing a LfP like strategy: c1 (the speed controller),

c2 (the environment) and c3 (train constraints). The

components c1 and c2 are related using a shared mem-

ory like mechanism: tables representing the environ-

ment behavior can be read by the speed controller.

The components c1 and c3 are related using a syn-

chronous mechanism: the train behavior introduces

constraints that must be satis�ed by the speed con-

troller (e.g., a train cannot stop instantaneously).

Since time has been discretized, distance and

speed must also be discretized. A distance unit is used,

corresponding to the shortest distance covered by the

train when at slowest (but non-zero) speed. All envi-

ronmental interactions can be modeled using calculus

tables.

Veri�cation strategy: To complete the proof, two

Petri net models must be derived from the LfP spec-

i�cation.

Figure 4 shows the Petri net produced to verify

P1. It corresponds to the behavior of a train going

fro
m

a
sta

tio
n
to

a
n
o
th
er

o
n
e.

S
o
m
e
tra

n
sitio

n
s
a
re

�
red

w
h
en

th
e
tra

in
m
isses

a
sta

tio
n
(M

issS
ta
tio

n
a
n
d

T
oo
E
a
rly

).
T
h
e
tra

ck
is
\
circu

la
r"

a
n
d
th
u
s,
a
tra

in

w
ith

a
co
rrect

b
eh
a
v
io
r
sh
o
u
ld

n
ev
er

sto
p
.

V
a
ria

b
les

a
re

d
e�
n
ed

a
s
fo
llo
w
s:

�
tsp

:
cu
rren

t
tra

in
sp
eed

,

�
d
b
:
d
ista

n
ce

to
sta

tio
n
b
efo

re
th
e
m
o
v
e,

�
d
a
:
d
ista

n
ce

to
sta

tio
n
a
fter

th
e
m
o
v
e,

�
d
a
2
:
d
ista

n
ce

to
sta

tio
n
a
fter

th
e
m
o
v
e
if
th
e
tra

in

a
ccelera

tes,

�
d
s
:
d
ista

n
ce

to
sto

p
a
t
cu
rren

t
sp
eed

,

�
d
s2
:
d
ista

n
ce

to
sto

p
if
sp
eed

is
in
crea

sed
,

�
tid

:
th
e
tra

in
id
en
ti�

er.

S
o
m
e
p
la
ces

m
o
d
el

th
e
en
v
iro

n
m
en
t:

N
ew

D
ist-

T
a
ble

co
m
p
u
tes

a
n
ew

d
ista

n
ce

a
fter

a
m
o
v
e
a
t
a
g
iv
en

sp
eed

,
S
to
p
T
a
ble

co
m
p
u
tes

th
e
d
ista

n
ce

to
sto

p
fro

m
a

cu
rren

t
sp
eed

1
a
n
d
D
istS

ta
tio

n
co
rresp

o
n
d
s
to

a
set

o
f

p
o
ssib

le
d
ista

n
ces

b
etw

een
sta

tio
n
s.

P
la
ce

T
ra
in
S
ta
te

sto
res

a
set

o
f
tra

in
s
(to

va
lid

a
te

P
1 ,
w
e
o
n
ly
n
eed

o
n
e

tra
in
).
T
h
ere

is
a
tra

in
p
er

to
k
en

(h
ere,

th
e
o
n
ly
tra

in

h
a
s
id
en
tity

1
,
sp
eed

0
a
n
d
is
in

a
sta

tio
n
(d
ista

n
ce

to

sta
tio

n
=
0
).

S
o
m
e
tra

n
sitio

n
s
m
o
d
el
th
e
fo
llo
w
in
g
stra

teg
y
:

�
A
tS
ta
tio

n
:
W
h
en

a
tra

in
is
a
t
a
sta

tio
n
,
it
a
cceler-

a
tes

a
n
d
receiv

es
th
e
d
ista

n
ce

to
th
e
n
ex
t
sta

tio
n
.

�
T
ra
in
A
cc
:
If
th
e
d
ista

n
ce

is
su
Æ
cien

t
n
o
t
to

m
iss

th
e
sta

tio
n
,
th
e
tra

in
ca
n
a
ccelera

te.

�
T
ra
in
S
ta
ble

:
T
h
e
tra

in
k
eep

s
its

sp
eed

if
th
e
d
is-

ta
n
ce

is
n
o
t
su
Æ
cien

t
to

a
ccelera

te,
b
u
t
is
su
Æ
-

cien
t
if
sp
eed

rem
a
in

co
n
sta

n
t.

�
T
ra
in
D
ec
:
If
th
e
d
ista

n
ce

is
n
o
t
su
Æ
cien

t
to

m
a
in
-

ta
in

a
co
n
sta

n
t
sp
eed

,
th
e
tra

in
m
u
st

d
ecelera

te.

�
T
ra
in
S
to
p
:
W
h
en

tra
in

sp
eed

is
o
n
e
a
n
d
d
ista

n
ce

to
th
e
sta

tio
n
is
o
n
e,
th
e
tra

in
h
a
s
to

sto
p
.

V
a
lid

a
tio

n
fo
r
th
is

m
o
d
el

w
a
s
d
o
n
e
u
sin

g
C
P
N
-

A
M
I
[8
],

o
u
r
P
etri-n

et
b
a
sed

C
A
S
E

en
v
iro

n
m
en
t.

F
irst

w
e
g
en
era

te
th
e
sta

te
sp
a
ce

u
sin

g
th
e
P
R
O
D

m
o
d
el

ch
eck

er
[1
6
]
in

C
P
N
-A
M
I.

W
e
th
en

o
b
serv

ed

th
a
t
a
term

in
a
l
sta

te
w
a
s
n
o
t
rea

ch
ed
.
It
m
ea
n
s
th
a
t

tra
n
sitio

n
s
M
issS

ta
tio

n
a
n
d
T
oo
E
a
rly

a
re

n
ev
er

�
red

(th
ey

g
en
era

te
a
term

in
a
l
sta

te).

1
U
sin

g
m
o
re

p
a
ra
m
eters

su
ch

a
s
g
ra
d
e
is
ea
sy.

It
w
o
u
ld

a
d
d

m
o
re

in
p
u
t
en
tries

to
th
e
ta
b
le
(o
n
ly

ts
p
is
u
sed

in
F
ig
u
re

4
).

DistStation
distance

TrainState
train_context

<1, 0, 0>

StopTable

speed_dist

TrainStable
[(da2 <= ds2 and
da > ds) or
(da2 > ds2 and
tsp = 4) or
(tsp=1 and db > 1)]

TrainDec
[da <= ds
and tsp > 1]

TrainAcc
[da2 > ds2 and
tsp < 4]

TooEarly
[tsp = 0 and
db > 0]

MissStation
[tsp > 0 and
db = 0]

AtStation

NewDistTable
dist_speed_dist

TrainStop

<tid, 0, 0>

<tid, 1, 1>

<db, tsp++1, da2>+<db,tsp,da>
<db, tsp++1, da2>+<db,tsp,da>
<db, tsp++1, da2>+<db,tsp,da>

<db, tsp++1, da2>+<db,tsp,da>
<db, tsp++1, da2>+<db,tsp,da>

<db, tsp++1, da2>+<db,tsp,da>

<tsp++1,ds2> <tsp++1,ds2>+
<tsp,ds>

<tsp++1,ds2>+
<tsp,ds>

<tsp++1,ds2>+
<tsp,ds>

<tsp++1,ds2>+
<tsp,ds>

<tsp++1,ds2>

<tid, tsp, db><tid, tsp, db><tid, tsp, db><tid,tsp, db><tid, tsp, db><tid, 0, 0>

<tid, tsp, da><tid, tsp--1,da><tid, tsp++1,da>

<tid, 1, da>

<da><da>

F
ig
u
re

4
:
P
etri

n
et

m
o
d
el
to

v
erify

P
1

W
e
v
eri�

ed
P
2
u
sin

g
a
sim

ila
r
m
o
d
elin

g
stra

teg
y.

T
h
e
m
a
in

d
i�
eren

ce
is
th
a
t
th
e
en
v
iro

n
m
en
t
co
n
ta
in
s

a
\
cra

zy
tra

in
"
m
o
v
in
g
ra
n
d
o
m
ly

(m
o
v
in
g
b
a
ck
w
a
rd
s

is
n
o
t
a
llo
w
ed
).

T
h
e
stu

d
ied

tra
in

th
en

h
a
s
to

n
ev
er

cra
sh

in
to

th
e
\
cra

zy
"
o
n
e.

D
u
e
to

sp
a
ce

co
n
stra

in
ts,

w
e
a
re

u
n
a
b
le

to
sh
o
w

th
is
m
o
d
el.

It
m
o
d
els

a
sectio

n
o
f
tra

ck
.
W
h
en

th
e

\
cra

zy
"
tra

in
rea

ch
es

th
e
en
d
o
f
th
e
p
a
th
,
w
e
a
rti�

-

cia
lly

b
lo
ck

th
e
m
o
d
el.

S
im

ila
rly

to
th
e
m
o
d
el
d
e�
n
ed

fo
r
P
1 ,
a
n
a
ccid

en
t
tra

n
sitio

n
b
lo
ck
s
th
e
sy
stem

w
h
en

th
e
d
ista

n
ce

b
etw

een
th
e
\
cra

zy
"
tra

in
a
n
d
th
e
stu

d
ied

o
n
e
is
b
elo

w
a
p
red

e�
n
ed

lim
it.

W
e
u
sed

th
e
sa
m
e
stra

teg
y
to

va
lid

a
te

th
e
seco

n
d

m
o
d
el.

M
o
d
el
ch
eck

in
g
sh
o
w
s
th
a
t
th
e
o
n
ly

term
in
a
l

sta
te

in
th
e
sta

te
sp
a
ce

o
ccu

rs
w
h
en

th
e
\
cra

zy
"
tra

in

rea
ch
es

th
e
en
d
o
f
th
e
m
o
d
eled

p
a
th
.

Lessons Learned: Our validation strategy is thus

composed of two di�erent levels: an environmental de-

scription with its own validation procedure and valida-

tion of the speed command strategy correctness. The

environmental description is compiled in the calculus

tables (component c2) that are used in the Petri net

model describing the speed control strategy.

Our two levels validation strategy keeps the ob-

tained model within Petri nets' expression power

bounds. Therefore all kind of analysis can be per-

formed: model-checking, but also structural analysis.

Furthermore, the resulting model focuses on the main

problem (the speed control strategy) and leaves to an-

other level of veri�cation the environmental part of

the problem. As a consequence, the resulting model

has a small reachability graph. Finally, this valida-

tion strategy is general enough to allow di�erent level

of speci�cation of the environmental part, and thus an

\easy" incremental construction of the �nal model.

4.4 A Re�nement-based Development

Approach

The High Integrity Software (HIS) group at Sandia

National Laboratories, is exploring the potential of-

fered by the application of highly domain speci�c for-

mal methods to the software development process. To

date, the primary tool that we have developed to assist

us in the exploration of this type of development is a

general purpose program transformation system called

HATS [18]. HATS is a language independent rewrite-

based transformation system. Software development

takes place within a context-free wide-spectrum lan-

guage containing both the domain language and the

implementation language.

Properties to be Veri�ed: Our veri�cation e�ort

was focused on correctly de�ning the safety properties

of the BART system and then formally showing that

our implementation satis�ed these safety properties.

We focused on the following safety properties: (S1) an

object train should never exceed the speed limit of

the track segment on which it is currently traveling,

(S2) an object train should never get so close to its

lead train that an unexpected stop or derailment of

the lead train would result in a collision between the

object train and the lead train, and (S3) the object

train should stop at signals and stations when told to

do so. Our veri�cation of property (S3) is based on

the assumption that the environment will tell a train

to stop at a signal or station only when it is possible

for the train to satisfy this request.

Modeling: We modeled the state of the system as

a vector of monitored and controlled variables quan-

ti�ed over discrete �nite domains. In this framework,

train behavior at discrete points can be modeled as a

sequence of state vectors. Our belief is that this model

directly captures the system and is harmonious with

the system view presented in the case study document.

At this point, we encountered a fundamental prob-

lem when trying to formally de�ne safety properties

with respect to our model. For example, what rela-

tionships should a sequence of discrete points de�ning

object train behavior and track speed limits have in

order to satisfy the property: the object train should

never exceed the speed limit of the track segment on

which it is traveling? The problem here is that safety

properties are most directly expressed in a continu-

ous framework and our model is discrete. Some ex-

perimentation led us to the conclusion that the most

elegant way to address this problem was to lift the dis-

crete model into a continuous framework. This lifting

was done in a conservative manner with respect to the

safety properties we wanted to verify. Thus conserva-

tive lifting would assure that safety properties veri�ed

for the model would also extend to our discrete model

which reects our understanding of the physical sys-

tem.

An important thing to note about safety proper-

ties is that they must ultimately be de�ned, either

directly or indirectly, in terms of train behaviors (i.e.,

state sequences) rather than in terms of train states.

We de�ned safety properties in a recursive manner

and explored de�ning safety from both the negative

(\shall not" properties) as well as positive (\shall"

properties) manner. For example, in a negative ap-

proach one de�nes a safety property by de�ning the

set of unsafe states (i.e., the states that statically rep-

resent a safety violation or those states in which one

cannot guarantee that the train controller can avoid

a transition sequence to a statically unsafe state). In

this context, the goal of a train control algorithm is

to avoid transitioning from a safe state to an unsafe

state. The positive approach to de�ning safety prop-

erty is in terms of safe states. In this approach, a

train's state is safe if the controller can avoid (from

this state) a behavior sequence that would force it into

an unsafe state. From this perspective, the goal of the

train control algorithm is to only execute transitions

to other safe states. There di�erence between the two

approaches, while theoretically small, can have a sig-

ni�cant impact on the elegance in which special cases

can be speci�ed, etc.

Development, Veri�cation Process, and Re-

sults: In the development and veri�cation phase,

our goals were to (1) specify an abstract train con-

trol algorithm, (2) formally show that this algo-

rithm satis�es the stated safety properties, and (3)

re�ne this speci�cation into an implementation using

correctness-preserving transformations.

Our abstract train control algorithm is simple:

max of(all accelerations leading to safe states)

This is computed as follows (1) obtain the set of all

possible accelerations for the current state, and (2)

select the subset of accelerations which transition to

safe states. The main diÆculty here, of course, is

step 2 which involves the exploration of train behav-

iors. Analysis of the initial assumptions of the prob-

lem leads to the conclusion that, with respect to safety,

there are only a few types train behaviors that must be

considered: derail, emergency stop, and shortest pos-

sible normal stop. It is relatively easy to show that

other behaviors need not be considered when consid-

ering safety properties. We believe that this type of

observation is key in order to make the size of the

behavioral state space manageable.

In our approach, we developed/de�ned a domain

speci�c operator,�, for comparing continuous object

train behaviors with safety properties. We then for-

mally veri�ed two theorems that enabled us to map

such continuous comparisons to discrete comparisons.

At this point we had an abstract algorithm that was

expressed in terms of various operations on �nite dis-

crete sets [4]. The next step was to map these oper-

ations to a high-level language. Our target language

was ML. This transformation resulted in an executable

speci�cation, which was not eÆcient enough to meet

the real-time constraints of the system. In order to

improve the eÆciency, we applied various optimizing

transformations. Some of these transformations were

formally veri�ed by RRL while others were veri�ed

by hand. The result was an implementation that ran

signi�cantly faster than the original executable speci-

�cation.

We would like to point out that while we did not

verify the correctness of all transformations that were

applied, we did veri�y the correctness of key transfor-

mations. Another thing worth mentioning is that we

made various simpli�cations in our system model. For

example, the acceleration function and the equations

for train motion have been simpli�ed. Re�ning these

aspects of our model will not e�ect our speci�cation

or the de�nition of safety properties, but will e�ect

the latter stage of the transformational development

phase.

5 Conclusions

From a formal standpoint, there are three major ar-

eas that must be addressed in order to analyze and

develop a system such as BART. First, there is the

problem of mapping from an informal system descrip-

tion (e.g., the text of the case study) to a formal one.

Under the assumption that the case study text re-

ected the thoughts of domain experts, one can as-

sume that the text mentions important abstractions,

concepts, and operations. Some examples of this from

the BART case study are: (1) stopping pro�le, (2)

worst case stopping pro�le, (3) train speed, (4) track

speed limit, (5) acceleration, and (5) equations de-

scribing train motion. An important part of model de-

velopment is the formalization and validation of these

terms. In Section 4.1, this issue is addressed by pro-

ducing a rigorous SRD. In Section 4.2, the mapping

issue is addressed by explicitly modeling a physical

train which is distinctly di�erent from the abstract

train.

The second major area concerns itself with the

incorporation of domain knowledge such as equations

describing the behavior of a train over a �nite time in-

terval. At some point, the software developer must ac-

cept domain knowledge in the form of axioms. These

axioms de�ne the ground rules from which model-

based system analysis proceeds. For example, in Sec-

tion 4.3 such axioms may provide the basis for table

generation and in Section 4.4 they provide the building

blocks for pro�le calculation. The decision regarding

what is a \fair" axiom can have a dramatic impact

on the complexity and attendant analyzability of the

model. An extreme (i.e., unfair) example in BART

would be to have a \safe-acceleration" operation be

axiomatic. This example demonstrates that one must

be careful regarding the interplay between axiomatic

domain knowledge and what insight one hopes to gain

from model analysis. A document explicitly describ-

ing what domain knowledge is treated as axiomatic

and how it impacts model analysis would be helpful

to clarify what the bene�ts of formal analysis would

be.

And �nally, how complexity is handled is crucial

to the success of the approach. An incremental ap-

proach can be taken, where a simple model is ex-

panded in manageable increments. A lemma-based

approach could be taken in which a growing knowl-

edge base could be used to restrict or focus the anal-

ysis e�ort. Other approaches are also possible.

In conclusion, an interesting and important area

of formal methods research is on how to integrate the

above so that the best approach and toolset can be

used for the job at hand.

References

[1] Jean-Raymond Abrial, Egon B�orger, and Hans

Langmaack.Formal Methods for Industrial Appli-

cations: Specifying and Programming the Steam

Boiler Control. LNCS 1165, Springer-Verlag, Oc-

tober 1996. (ISBN 3-540-61929-1)

[2] G. Chiola, C. Dutheillet, G. Franceschini and

S. Haddad. On Well-Formed Coloured Nets and

their Symbolic Reachability Graph. High Level

Petri Nets. Theory and Application. Edited by

K. Jensen G.Rozenberg, Springer Verlag 1991.

[3] D. Kapur and H. Zhang. An overview of Rewrite

Rule Laboratory (RRL). J. of Computer and

Mathematics with Applications,g 29, 2, 1995, 91-

114.

[4] Deepak Kapur and Victor Winter. On the Con-

struction of a Domain Language for a Class of

Reactive Systems. In High Integrity Software,

Eds. Winter and Bhattacharya, Kluwer Academic

Press, 2001.

[5] F. Kordon, I. Mounier, E. Paviot-Adet and

D. Regep. Formal veri�cation of embedded dis-

tributed systems in a prototyping approach. Pro-

ceedings of the International Workshop on Engi-

neering Automation for Software Intensive Sys-

tem Integration, June 2001.

[6] M. Lemoine et al. Validating Requirements: The

Evolutionnary Approach. Computer Software and

Application Conference (COMPSAC98), Wien,

Austria, 1998.

[7] C. Lewerentz and T. Lindner. Formal Develop-

ment of Reactive Systems: Case Study Production

Cell. Lecture Notes in Computer Science Vol. 891,

Springer-Verlag, 1995.

[8] MARS-Team. A LfP :The Mars Project Home

Page. http://www.lip6.fr/mars.

[9] S. Owre, J. Rushby, and N. Shankar. PVS: A

prototype veri�cation system. 11th Conference on

Automated Deduction, Lecture Notes in Arti�-

cial Intelligence, Vol. 607, pp 748-752, Springer-

Verlag, 1992.

[10] D. Regep and F. Kordon. LfP : A speci�cation

language for rapid prototyping of concurrent sys-

tems. Proceedings of the 12th IEEE International

Workshop on Rapid System Prototyping, June

2001.

[11] W. P. de Roever et. al. Concurrency Veri�cation:

An Introduction to State-based methods. Cam-

bridge University Press, Sept. 2001.

[12] J. Rumbaugh, I. Jacobson and G. Booch. The

Uni�ed Modeling Language - Reference Manual.

Addision-Wesley, 1999.

[13] John Rushby. Formal Methods and their Role in

the Certi�cation of Critical Systems. Technical

Report CSL-95-1, March 1995.

[14] M. Spivey. The Z notation - A reference manual.

Prentice Hall International, 1989.

[15] Standard. EAI-632: Processes for Engineering a

System. INCOSE 1998.

[16] K. Varpaaniemi, K. Hiekkanen and T. Pyssysalo.

PROD reference manual. Helsinki University of

Technology, Digital Systems Laboratory, 1995.

[17] V.L.Winter, R. S. Berg, and J. Ringland. Bay

Area Rapid Transit District Advance Automated

Train Control System Case Study Description. In

High Integrity Software, Eds. Winter and Bhat-

tacharya, Kluwer Academic Press, 2001.

[18] V. L. Winter. An Overview of HATS: A Lanau-

gage Independent High Assurance Transforma-

tion System. Proceedings of the IEEE Sympo-

sium on Application-Speci�c Systems and Soft-

ware Engineering Technology (ASSET), March

24-27, 1999.

[19] V. L. Winter, D. Kapur, R. S. Berg. Formal Spec-

i�cation and Re�nement of a Safe Train Control

Function. Submitted to The Computer Journal,

draft available at www.sandia.gov/AST.

[20] V. L. Winter, D. Kapur, and R.S. Berg. A

Re�nement-based Approach to Deriving Train

Controllers. In High Integrity Software, Eds.

Winter and Bhattacharya, Kluwer Academic

Press, 2001.

