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Abstract. In this paper we study the strength of two hash functions which are based on Gen-
eralized Feistels. We describe a new kind of attack based on a cancellation property in the round
function. This new technique allows to efficiently use the degrees of freedom available to attack
a hash function. Using the cancellation property, we can avoid the non-linear parts of the round
function, at the expense of some freedom degrees.
Our attacks are mostly independent of the round function in use, and can be applied to similar
hash functions which share the same structure but have different round functions. We start with a
22-round generic attack on the structure of Lesamnta, and adapt it to the actual round function to
attack 24-round Lesamnta (the full function has 32 rounds). We follow with an attack on 9-round
SHAvite-3 512 which also works for the tweaked version of SHAvite-3 512.

1 Introduction

Many block ciphers and hash functions are based on generalized Feistel constructions. In this
paper we treat such generalized Feistel constructions and especially concentrate on the case
where an n-bit round function is used in a 4n-bit structure. Two of these constructions, shown
at Figure 1,1 used in the Lesamnta and the SHAvite-3 512 hash functions, are the main focus of
this paper.
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Fig. 1. The Generalized Feistel Constructions Studied in this paper

While in the ideal Luby-Rackoff case, the round functions are independent random functions,
in practice, most round functions F (k, x) are usually defined as P (k ⊕ x), where P is a fixed

1 Note that the direction of the rotation in the Feistel structure is not really important: changing the rotation
is equivalent to considering decryption instead of encryption.



permutation (or function). Hence, we introduce several attacks which are based on cancellation
property: if the fixed function P accepts twice the same input, it produces twice the same output.
In a hash function setting, as there is no secret key, the adversary may actually make sure that
the inputs are the same.

For Lesamnta we start with generic attacks that work independent of the actual P in use,
but then use the specific properties of Lesamnta’s round functions to offer better attacks. The
attack on SHAvite-3 512 is a more complicated one, following the more complex round functions
(and the structure which uses two functions in each round), but at the same time, is of more
interest as SHAvite-3 512 is still a SHA3 candidate.

1.1 Overview of the Attacks

Our attacks are based on a partial preimage attack, i.e. we can construct specific inputs where
part of the output H is equal to a target value H. To achieve such a partial preimage attack, we
use truncated differentials built with the cancellation property, and we express the constraints
needed on the state of the Feistel network in order to have the cancellation with probability one.
We use degrees of freedom in the inputs of the compression function to satisfy those constraints.
Then, we can compute some part of the output as a function of some of the remaining degrees
of freedom, and try to invert the equation. The main idea is to obtain a simple equation that
can be easily inverted using cancellations to limit the diffusion.

A partial preimage attack on the compression function allows to choose k bits of the output
for a cost of 2t (with t < k), while the remaining n − k bits are random. We can use such an
attack on the compression function to target the hash function itself, in several scenarios.

Preimage Attacks By repeating such an attack 2n−k times, we can obtain a full preim-
age attack on the compression function, with complexity 2n+t−k. This preimage attack on the
compression function can be used for a second preimage attack on the hash function with com-
plexity 2n+(t−k)/2 using a standard unbalanced meet-in-the middle [8]. Note that 2n+(t−k)/2 < 2n

if t < k.
Moreover, we point out that Lesamnta is built following the Matyas-Meyer-Oseas construc-

tion, i.e. the chaining value is used as a key, and the message enters the Feistel rounds. Since
our partial preimage attack does not use degrees of freedom in the key (we only need the key to
be known, not chosen), we can use a chaining value reached from the IV as the key. We have to
repeat the partial preimage attack with many different keys in order to build a full preimage,
but we can use a first message block to randomize the key. This gives a second preimage attack
on the hash function with complexity 2t+n−k.

Collision Attacks The partial preimage attack can also be used to find collisions in the
compression function. By generating 2(n−k)/2 inputs where k bits of the output are fixed to
a common value, we expect a collision thanks to the birthday paradox. This collision attack
on the compression function costs 2t+(n−k)/2. If t < k/2, this is more efficient than a generic
birthday attack on the compression function.

If the compression function is built with the Matyas-Meyer-Oseas mode, like Lesamnta, this
attack translates to a collision attack on the hash function with the same complexity. However, if
the compression function follows the Davies-Meyer mode, like SHAvite-3 , this does not translate
to an attack on the hash function.

1.2 Our results

The first candidate for the technique is the Lesamnta hash function. The best known generic
attack against this structure is a 16-round attack by Mendel described in the submission docu-
ment of Lesamnta [6]. Using a cancellation property, we extend this attack to a generic attacks



on 22-round Lesamnta. The attack allows to fix one of the output words for an amortized cost of
1, which gives collisions in time 23n/8 and second preimages in time 23n/4 for Lesamnta-n. More-
over, the preimage attack can be extended to 24 rounds using 2n/4 memory. We follow with
adaptations of the 24-round attacks without memory using specific properties of Lesamnta’s
round function.

The second target for our technique is the hash function SHAvite-3 512. We show a 9-round
attack using a cancellation property on the generalized Feistel structure of SHAvite-3 512. The
attack also works for the tweaked version of SHAvite-3 512, and allows fixing one out of the four
output words. This allows a second preimage attack on 9-round SHAvite-3 512 that takes about
2448 time. Note that this attack has recently been improved in a follow-up work [5]. First a new
technique was used to add one extra round at the beginning, leading to attacks on 10 rounds of
the compression function. Second, a pseudo-attack against the full SHAvite-3 512 is described,
using additional degrees of freedom in the salt input. The follow-up work has been published
first because of calendar issues, but it is heavily based on this work which was available as a
preprint to the authors of [5]. Moreover, in this paper, we describe a more efficient way to find
a suitable key for the attack, which improves the 10-round attack of [5].

Finally, we show some applications to block ciphers. We describe an integral attack on 21
rounds of the inner block cipher of Lesamnta using a cancellation property, and a new truncated
differential for SMS4 .

The paper is organized as follows. Section 2 explains the basic idea of our cancellation
attacks. Our results on Lesamnta are presented in Section 3, while application to SHAvite-3 512

is discussed in Section 4. Finally, application to the inner block cipher of Lesamnta is shown in
Appendix A, while an attack on SMS4 is described in Appendix B.These results are summarized
in Section 5.

2 The Cancellation Property

In this paper we apply cancellation cryptanalysis to generalized Feistel schemes. The main idea
of this technique is to impose constraints on the values of the state in order to limit the diffusion
in the Feistel structure. When attacking a hash function, we have many degrees of freedom from
the message and the chaining value, and it is important to find efficient ways to use those degrees
of freedom.

Table 1. Cancellation property on Lesamnta.
On the left side, we have full diffusion after 9 rounds.
On the right side, we use the cancellation property to control the diffusion of the differences.

i Si Ti Ui Vi Si Ti Ui Vi

0 x - - - x - - -
1 - x - - - x - -
2 - - x - - - x -
3 y1 - - x x→ y1 y - - x x→ y
4 x y1 - - x y - -
5 - x y1 - - x y -
6 z - x y1 y1 → z z - x y y → z
7 y′ z - x x→ y2, y

′ = y1 ⊕ y2 - z - x x→ y
8 x y′ z - x - z -
9 w x y′ z z → w w x - z z → w

Table 1 shows the diffusion of a single difference in Lesamnta. After 9 rounds, all the state
words are active. However, we note that if the transitions x → y1 at rounds 3 and x → y2 at



round 7 actually go to the same y, i.e. y1 = y2, this limits the diffusion. In the ideal case, the
round functions are all independent, and the probability of getting the same output difference
is very small. However, in practice, the round functions are usually all derived from a single
fixed permutation (or function). Therefore, if we add some constraints so that the input values
of the fixed permutation at round 3 and 7 are the same, then we have the same output values,
and therefore the same output difference with probability one. This is the cancellation property.

Table 2. Cancellation property on SHAvite-3 512.
On the left side, we have full diffusion after 4 rounds.
On the right side, we use the cancellation property to control the diffusion.

i Si Ti Ui Vi Si Ti Ui Vi

0 x - - - x - - -
1 - x - - - x - -
2 - y1 x - x→ y1 - y x - x→ y
3 - z y1 x y1 → z - z y x y → z
4 x w z y′ x→ y2, y

′ = y1 ⊕ y2 x w z - x→ y

Similarly, Table 2 shows the diffusion of a difference in SHAvite-3 512. If the transitions
x→ y1 at round 2 and x→ y2 at round 4 actually go to the same y, we can limit the diffusion.

Our attacks use an important property of the Feistel schemes of Lesamnta and SHAvite-3 512:
the diffusion is relatively slow. When a difference is introduced in the state, it takes several
rounds to affect the full state and two different round functions can receive the same input
difference x. Note that the slow diffusion of Lesamnta is the basis of a 16-round attack in [6]
(recalled in Section 3.2), and the slow diffusion of SHAvite-3 512 gives a similar 8-round attack [4].
Our new attacks can be seen as extensions of those.

We now describe how to enforce conditions of the state so as to have this cancellation with
probability 1. Our attacks are independent of the round function, as long as all the round
functions are derived from a single function as Fi(Xi) , F (Ki ⊕Xi).

2.1 Generic Properties of Fi(Xi) = F (Ki ⊕ Xi)

We assume that the round functions Fi are built by applying a fixed permutation (or function)
F to Ki ⊕Xi, where Ki is a round key and Xi is the state input. This practice is common in
many primitives like DES, SMS4 , GOST, or Lesamnta.

This implies the followings, for all i, j, k:

(i) ∃ci,j : ∀x, Fi(x⊕ ci,j) = Fj(x).
(ii) ∀α, #

{
x : Fi(x)⊕ Fj(x) = α

}
is even.

(iii)
⊕

x Fk
(
Fi(x)⊕ Fj(x)

)
= 0.

Property (i) is the basis of our cancellation attack. We refer to it as the cancellation property.
It states that if the inputs of two round functions are related by a specific fixed difference, then
the outputs of both rounds are equal. The reminder of the paper is exploring this property.

Properties (ii) and (iii) can be used in an integral attack, as shown in Appendix A. Note
that Property (ii) is a well known fact from differential cryptanalysis.

Proof.

(i) Set cij = Ki ⊕Kj .
(ii) If Ki = Kj , then ∀x, Fi(x) ⊕ Fj(x) = 0. Otherwise, let x be such that Fi(x) ⊕ Fj(x) = α.

Then Fi(x⊕Ki ⊕Kj)⊕ Fj(x⊕Ki ⊕Kj) = Fj(x)⊕ Fi(x) = α. Therefore x is in the set if
and only if x⊕Ki ⊕Kj is in the set, and all the elements can be grouped in pairs.

(iii) Each term Fk(α) in the sum appears an even number of times following (ii). ut



Table 3. Values of the Registers for Five Rounds of Lesamnta.

i Si Ti Ui Vi

2 a b c d
3 F2(c)⊕ d a b c
4 F3(b)⊕ c F2(c)⊕ d a b
5 F4(a)⊕ b F3(b)⊕ c F2(c)⊕ d a
6 F5(F2(c)⊕ d)⊕ a F4(a)⊕ b F3(b)⊕ c F2(c)⊕ d
7 F6(F3(b)⊕ c)⊕ F2(c)⊕ d F5(F2(c)⊕ d)⊕ a F4(a)⊕ b F3(b)⊕ c

2.2 Using the Cancellation Property

To better explain the cancellation property, we describe how to use it with the truncated differ-
ential of Table 1. In Table 3, we show the values of the registers during the computation of the
truncated differential, starting at round 2 with (S2, T2, U2, V2) = (a, b, c, d). To use the cancella-
tion property, we want to make S7 independent of c. Since we have S7 = F6(F3(b)⊕ c)⊕F2(c)⊕d,
we can cancel the highlighted terms using property (i). The dependency of S7 on c disappears
if F3(b) = K2 ⊕K6, i.e. if b = F−1

3 (K2 ⊕K6):

S7 = F6(F3(b)⊕ c)⊕ F2(c)⊕ d
= F (K6 ⊕ F3(b)⊕ c)⊕ F (K2 ⊕ c)⊕ d
= F (K2 ⊕ c)⊕ F (K2 ⊕ c)⊕ d = d.

Therefore, we can put any value c in U2, and it does not affect S7 as long as we fix the value of
T2 to be F−1(K2⊕K6)⊕K3. Note that in a hash function, we can compute F−1(K2⊕K6)⊕K3

since the keys are known to the adversary (or controlled by him), and we can choose to have
this value in T2.

This shows the three main requirements of our cancellation attacks:

– The generalized Feistel structures we study have a relatively slow diffusion. Therefore, the
same difference can be used as the input difference of two different round functions.

– The round functions are built from a fixed permutation (or a fixed function), using a small
round key. This differs from the ideal Luby-Rackoff case where all round functions are chosen
independently at random.

– In a hash function setting the key is known to the adversary, and he can control some of the
inner values.

Note that some of these requirements are not strictly necessary. For example, we show a 21-round
integral attack on Lesamnta, without knowing the keys in Section A. Moreover, in Section 4 we
show attacks on 9-round SHAvite-3 512, where the round functions use more keying material.

3 Application to Lesamnta

3.1 A Short Description of Lesamnta

Lesamnta is a hash function proposal by Hirose, Kuwakado, and Yoshida as a candidate in the
SHA-3 competition [6]. It is based on a 32-round unbalanced Feistel scheme with four registers
used in MMO mode. The key schedule is also based on a similar Feistel scheme. The round
function can be written as:

Si+1 = Vi ⊕ F (Ui ⊕Ki) Ti+1 = Si Ui+1 = Ti Vi+1 = Ui



Alternatively, we can write it with a single register X, equivalent to the original S

Xi+4 = Xi ⊕ F (Xi+1 ⊕Ki+3)

where K0, . . . ,K31 are round keys derived from the chaining value, and the state register X is
initialized with the message in X−3, X−2, X−1, X0. The output of the compression function is
X−3 ⊕X29, X−2 ⊕X30, X−1 ⊕X31, X0 ⊕X32.

3.2 Previous Results on Lesamnta

The best known attack on Lesamnta is the self-similarity attack of [2]. Following this attack,
the designers have tweaked Lesamnta by changing the round constants [12]. In this paper we
consider attacks that work with any round constants, and thus are applicable to the tweaked
version as well.

Several attacks on reduced-round Lesamnta are presented in the submission document [6].
A series of 16-round attacks for collisions and (second) preimage attacks are presented, all of
which are based on the following 16-round truncated differential with probability 1:

i Si Ti Ui Vi

0 x1 x2 x3 x⊕ x4

1 x x1 x2 x3 x3 → x4

2 - x x1 x2 x2 → x3

3 - - x x1 x1 → x2

4 - - - x x→ x1

5 x - - -
6 - x - -
7 - - x -
8 ? - - x
9 x ? - -
11 - x ? -
11 ? - x ?
12 ? ? - x
13 x ? ? -
14 ? x ? ?
15 ? ? x ?
16 ? ? ? x

FF ? ? ? x4

where2

x3 = M2 ⊕ F−1(F (M2 ⊕K0)⊕ x4)⊕K0, i.e. F0(U0)⊕ F0(U0 ⊕ x3) = x4

x2 = M1 ⊕ F−1(F (M1 ⊕K1)⊕ x3)⊕K1, i.e. F1(U1)⊕ F1(U1 ⊕ x2) = x3

x1 = M0 ⊕ F−1(F (M0 ⊕K2)⊕ x2)⊕K2, i.e. F2(U2)⊕ F2(U2 ⊕ x1) = x2

x = (M3 ⊕ F (M2 ⊕K0))⊕ F−1(F (M3 ⊕K3 ⊕ F (M2 ⊕K0))⊕ x1)⊕K3,

i.e. F3(U3)⊕ F3(U3 ⊕ x ) = x1

and Mi are the corresponding message words of the message block.

This truncated differential allows fixing the fourth output word to a constant value deter-
mined by the adversary using two queries to the compression function. One first picks a random

2 Note that the expression given for x in [6] is incorrect.



message m, and computes the difference x4 between the desired value H4 and the actual value
H4 = Vo⊕V16 of the fourth output word. Since the key is known, it is easy to compute x3 from
x4, and similarly x2, x1 and x, as shown above. Then, by picking m′ = m⊕ (x1, x2, x3, x⊕ x4),
it is assured that the fourth output word is equal to H4.

This allows a collision attack (of expected time complexity 297) and second preimage attack
(of expected time complexity 2193). We note that this property is independent of F (as long
as F is bijective), and can be applied even when the round functions are ideal independent
permutations.

In the next sections we show new attacks using the cancellation property. We first show some
attacks that are generic in F , as long as the round functions are defined as Fi(Xi) = F (Ki⊕Xi),
and then improved attacks using specific properties of the round functions of Lesamnta.

3.3 Generic Attacks

Our attacks are based on the differential of Table 4, which is an extension of the differential of
Table 1. In this differential we use the cancellation property three times to control the diffusion.
Note that we do not have to specify the values of y, z, w, r and t. This specifies a truncated
differential for Lesamnta: starting from a difference (x,−,−,−), we reach a difference (?, ?, ?, x1)
after 22 rounds. In order to use this truncated differential in our cancellation attack, we use
two important properties: first, by adding constraints on the state, the truncated differential is
followed with probability 1; second, the transition x→ x1 is known because the key and values
are known. Therefore, we can actually adjust the value of the last output word.

Table 4. Cancellation Property on 22 Rounds of Lesamnta

i Si Ti Ui Vi

0 x - - -
1 - x - -
2 - - x -
3 y - - x x→ y
4 x y - -
5 - x y -
6 z - x y y → z
7 - z - x x→ y
8 x - z -
9 w x - z z → w
10 z w x -
11 x1 z w x x→ x1
12 r x1 z w w → x⊕ r
13 - r x1 z z → w
14 ? - r x1
15 x1 + t ? - r r → t
16 r x1 + t ? -
17 ? r x1 + t ?
18 ? ? r x1 + t
19 x1 ? ? r r → t
20 ? x1 ? ?
21 ? ? x1 ?
22 ? ? ? x1

FF ? ? ? x1

In order to express the constraints that we need for the cancellation properties, we look
at the values of the registers for this truncated differential. In Table 5, we begin at round 2



with (S2, T2, U2, V2) = (a, b, c, d), and we compute the state values up to round 19. This is an
extension of the values computed in Table 3.

We can see that we have

X19 = F (c⊕ α)⊕ β,

where

α = K10 ⊕ F7(F4(a)⊕ b)⊕ F3(b) and β = d

provided that (a, b, d) is the unique triplet satisfying the following cancellation conditions:

Round 7: we have F6(F3(b)⊕ c)⊕ F2(c). They cancel if:
F3(b) = c2,6 = K2 ⊕K6 i.e. b = F−1

3 (K2 ⊕K6)
Round 13: we have F12(F9(d)⊕ F5(F2(c)⊕ d)⊕ a)⊕ F8(F5(F2(c)⊕ d)⊕ a). They cancel if:

F9(d) = c8,12 = K8 ⊕K12 i.e. d = F−1
9 (K8 ⊕K12)

Round 19: we have F18(F15(F4(a)⊕ b)⊕X12)⊕ F14(X12). They cancel if:
F15(F4(a)⊕ b) = c14,18 = K14 ⊕K18 i.e. a = F−1

4 (F−1
15 (K14 ⊕K18)⊕ b)

Note that a, b, d and α, β are uniquely determined from the subkeys. Hence, one can set X19

to any desired value X∗19 by setting c = F−1(X∗19 ⊕ β)⊕ α.

Table 5. Values of the Register for the 22-round Cancellation Property of Lesamnta

i Xi(= Si)

−1 d
0 c
1 b
2 a
3 F2(c)⊕ d
4 F3(b)⊕ c
5 F4(a)⊕ b
6 F5(F2(c)⊕ d)⊕ a
7 F6(F3(b)⊕ c)⊕ F2(c)⊕ d
8 F7(F4(a)⊕ b)⊕ F3(b)⊕ c
9 F8(F5(F2(c)⊕ d)⊕ a)⊕ F4(a)⊕ b
10 F9(d)⊕ F5(F2(c)⊕ d)⊕ a
11 F10(F7(F4(a)⊕ b)⊕ F3(b)⊕ c)⊕ d
12 F11(F8(F5(F2(c)⊕ d)⊕ a)⊕ F4(a)⊕ b)⊕ F7(F4(a)⊕ b)⊕ F3(b)⊕ c
13 F12(F9(d)⊕ F5(F2(c)⊕ d)⊕ a)⊕ F8(F5(F2(c)⊕ d)⊕ a)⊕ F4(a)⊕ b
14 ?
15 F14(X12)⊕ F10(F7(F4(a)⊕ b)⊕ F3(b)⊕ c)⊕ d
16 F15(F4(a)⊕ b)⊕X12

17 ?
18 ?
19 F18(F15(F4(a)⊕ b)⊕X12)⊕ F14(X12)⊕ F10(F7(F4(a)⊕ b)⊕ F3(b)⊕ c)⊕ d

22-round Attacks The truncated differential of Table 4 can be used to attack 22-round
Lesamnta. We start with the state at round 2 (S2, T2, U2, V2) = (a, b, c, d) satisfying the cancel-
lation properties, and we can compute how the various states depend on c, as shown in Table 6.
A dash (-) is used to denote a value that is independent of c. We know exactly how c affects the
last output word, and we can select c in order to get a specific value at the output. Suppose we
are given a set of subkeys, and a target value H for the fourth output word. Then the attack
proceeds as follows:

1. Set a, b, and d to the values that allow the cancellation property.
Then we have V0 ⊕ V22 = η ⊕ F (c⊕ α)⊕ β, as shown in Table 6.



Table 6. Collision and Preimage Characteristic for the 22-Round Attack

i Si Ti Ui Vi

0 c - - η
1 - c - -
2 - - c -

2–19 Repeated Cancellation Property: Table 5

19 F (c⊕ α)⊕ β ? ? ?
20 ? F (c⊕ α)⊕ β ? ?
21 ? ? F (c⊕ α)⊕ β ?
22 ? ? ? F (c⊕ α)⊕ β

FF ? ? ? η ⊕ F (c⊕ α)⊕ β
η, α and β can be computed from a, b, d and the key:
η = b⊕ F0(a⊕ F3(d)), α = K11 ⊕ F8(F5(a)⊕ b)⊕ F4(b), β = d.

Table 7. Computing Values Backwards from the State (S4, T4, U4, V4) = (a, b, c, d)

i Xi

-3 d⊕ F0(c⊕ F1(b⊕ F2(a⊕ F3(d))))
-2 c⊕ F1(b⊕ F2(a⊕ F3(d)))
-1 b⊕ F2(a⊕ F3(d))
0 a⊕ F3(d)
1 d
2 c
3 b
4 a

V0 = X−3 = λ⊕ F0(c⊕ γ), with λ = d

2. Compute c as F−1(H ⊕ η ⊕ β)⊕ α.
3. This sets the state at round 2: (S2, T2, U2, V2) , (a, b, c, d).

With this state, we have V0 ⊕ V22 = H.
4. Compute the round function backwards up to round 0, to get the input (S0, T0, U0.V0).

This costs less than one compression function call, and does not require any memory.
For a given chaining value (i.e. a set of subkeys), this algorithm can only output one message.

To build a full preimage attack or a collision attack on the compression function, this has to be
repeated with random chaining values. Since the attack works for any chaining value, we can
build attacks on the hash function using a prefix block to randomize the chaining value. This
gives a collision attack with complexity 296 (2192 for Lesamnta-512), and a second-preimage
attack with complexity 2192 (2384 for Lesamnta-512).

24-round Attacks We can add two rounds at the beginning of the truncated differential at
the cost of some memory. The resulting 24-round differential is given in Table 8. The output
word we try to control is equal to F (c ⊕ γ) ⊕ F (c ⊕ α), for some constants α, and γ that
depend on the chaining value (note that β = λ in Table 8). We define a family of functions
hµ(x) = F (x) ⊕ F (x ⊕ µ), and for a given target value H, we tabulate ϕH(µ) = h−1

µ (H). For
each µ, ϕH(µ) is a possibly empty set, but the average size is one (the non-empty values form
a partition of the input space). In the special case where H = 0, ϕ0(µ) is empty for all µ 6= 0,
and ϕ0(0) is the full space.

We store ϕH in a table of size 2n/4, and we can compute it in time 2n/4 by looking for values
such that F (x)⊕ F (y) = H (this gives ϕH(x⊕ y) = x). Using this table, we are able to choose
one output word just like in the 22-round attack.

We start with a state (S4, T4, U4, V4) = (a, b, c, d) such that a, b, d satisfy the cancellation
conditions, and we compute α, β, γ, λ. If we use c = u⊕ α, where u ∈ ϕH(α⊕ γ) = h−1

α⊕γ(H),



Table 8. Collision and Preimage Path for the 24-round Attack

i Si Ti Ui Vi

0 - - c⊕ γ F (c⊕ γ)⊕ λ
1 - - - c⊕ γ
2 c - - -
3 - c - -
4 - - c -

4–21 Repeated Cancellation Property: Table 5

21 F (c⊕ α)⊕ β ? ? ?
22 ? F (c⊕ α)⊕ β ? ?
23 ? ? F (c⊕ α)⊕ β ?
24 ? ? ? F (c⊕ α)⊕ β
α, β, γ and λ can be computed from a, b, d and the key by:
α = K13 ⊕ F10(F7(a)⊕ b)⊕ F6(b), β = d and
γ = F1(b⊕ F2(a⊕ F3(d))), λ = d

we have:

V0 ⊕ V24 = F (c⊕ γ)⊕ F (c⊕ α)

= F (u⊕ α⊕ γ)⊕ F (u) = hα⊕γ(u) = H

On average this costs one compression function evaluation to find a n/4-bit partial preimage.
If the target value is 0, this only succeeds if α ⊕ γ = 0, but in this case it gives 2n/4 solutions.
This gives a preimage attack with complexity 23n/4 using 2n/4 memory.

Note that it is possible to make a time-memory trade-off with complexity 2n−k using 2k

memory for k < n/4.

3.4 Dedicated 24-round Attacks on Lesamnta

We now describe how to use specific properties of the round functions of Lesamnta to remove
the memory requirement of our 24-round attacks.

Neutral Subspaces in F256 The F function of Lesamnta-256 has a property that limits the
difference propagation to linear subspaces. Namely, we identified two linear subspaces Γ and Λ
for which

x⊕ x′ ∈ Γ ⇒ F (x)⊕ F (x′) ∈ Λ

The subspaces Γ and Λ have dimensions of 16 and 48, respectively.

The AES-like round function of Lesamnta-256 achieves full diffusion of the values after its
four rounds, but some linear combinations of the output are not affected. Starting from a single
active diagonal, we have:

SB
SR

MC
SB
SR

MC
SB
SR

MC
SB
SR

MC

All the output bytes are active, but there are some linear relations between them. More precisely,
the inverse MixColumns operation leads to a difference with two inactive bytes. Therefore, we
can equivalently say that there are 16 linear relations of the output bits that are not affected
by 16 input bits.

Collision and Second Preimage Attacks on Lesamnta-256 Using this property, we can choose
16 linear relations of the output of the family of function hµ, or equivalently, choose 16 linear
relations of the output of the compression function.



Let Λ̄ be a supplementary subspace of Λ. Any 64-bit value x can be written as x = xΛ +xΛ̄,
where xΛ ∈ Λ and xΛ̄ ∈ Λ̄. We show how to find values x such that hµ(x)Λ̄ = H Λ̄ for an
amortized cost of one, without memory:

1. Compute hµ(u) for random u’s until hµ(u)Λ̄ = H Λ̄
2. Far all v in Γ , we have hµ(u+ v)Λ̄ = H Λ̄

This gives 216 messages with 16 chosen relations for a cost of 216. It allows a second-preimage
attack on 24-round Lesamnta-256 with complexity 2240, and a collision attack with complex-
ity 2120, both memoryless.

Symmetries in F256 and F512 The AES round function has strong symmetry properties, as
studied in [9]. The round function F of Lesamnta is heavily inspired by the AES round, and
has similar symmetry properties. More specifically, if an AES state is such that the left half is
equal to the right half, then this property still holds after any number of SubBytes, ShiftRows,
and MixColumns operations. Explicitly, after one AES-like round of Lesamnta-256, we have:

w x w x

y z y z

AES−like−−−−−−→ w′ x′ w′ x′

y′ z′ y′ z′
where

{
w′ = 2 • S[w]⊕ S[z] x′ = 2 • S[x]⊕ S[y]

y′ = S[w]⊕ 2 • S[z] z′ = S[x]⊕ 2 • S[y]

And similarly in Lesamnta-512:

w x w x

y z y z

s t s t

u v u v

AES−−−→

w′ x′ w′ x′

y′ z′ y′ z′

s′ t′ s′ t′

u′ v′ u′ v′

When we consider the F functions of Lesamnta, we have that: if x⊕Ki is symmetric, then
Fi(x) = F (x⊕Ki) is also symmetric. More precisely, if we denote the set of symmetric values
by S, we use the following property:

x, x′ ∈ S ⇒ F (x)⊕ F (x′) ∈ S

Collision Attacks on Lesamnta-256 and Lesamnta-512 This property can be used for an im-
proved collision attack. As seen earlier we have V0⊕ V24 = F (c⊕ γ)⊕F (c⊕α). In order to use
the symmetry property, we first select random chaining values, and we compute the value of α
and γ until α ⊕ γ is symmetric (α ⊕ γ ∈ S). Then, if we select c such that c ⊕ γ ∈ S, we also
have c⊕ α ∈ S, and this gives V0 ⊕ V24 ∈ S.

We need to try 232 (respectively, 264 for Lesamnta-512) random chaining values in order to
get α ⊕ γ ∈ S, but once we have a good chaining value, we can use it with 232 (respectively,
264) messages, and for each one V0 ⊕ V24 ∈ S. So we can have 32 equalities between output
bits (respectively, 64 equalities) for an average cost of one compression function call. This leads
to a collision attack with complexity 2112 for Lesamnta-256, and 2224 for Lesamnta-512. In
Appendix C, we give an example of inputs where 64 bits of the output are set to 1 using this
property.

4 Application to SHAvite-3 512

SHAvite-3 is a hash function designed by Biham and Dunkelman for the SHA-3 competition [1].
It is based on a generalized Feistel construction with an AES-based round function, used in
Davies-Meyer mode. In this section we study SHAvite-3 512, the version of SHAvite-3 designed
for output size of 257 to 512 bits. The cancellation property can not be used on SHAvite-3 256

because the Feistel structure is different and has a faster diffusion. We describe an attack on
the SHAvite-3 512 hash function reduced to 9 rounds out of 14. An earlier variant of our attack
was later extended in [5] to a 10-round attack. We note that our improved 9-round attack can
be used to offer an improved 10-round attack.



Yi+1XiXi+1Yi

YiXi−1XiYi−1

Ki

K′i

F ′ F

Xi+1 = Yi−1 ⊕ Fi(Xi)

Yi+1 = Xi−1 ⊕ F ′i (Yi)

Xi−1 = Yi+1 ⊕ F ′i (Yi)

Yi−1 = Xi+1 ⊕ Fi(Xi)

Fig. 2. The Underlying Block Cipher of C512

4.1 A Short Description of SHAvite-3512

The compression function of SHAvite-3 512 accepts a chaining value of 512 bits, a message
block of 1024 bits, a salt of 512 bits, and a bit counter of 128 bits. As this is a Davies-Meyer
construction, the message block, the salt, and the bit counter enter the key schedule algorithm
of the underlying block cipher. The key schedule algorithm transforms them into 112 subkeys
of 128 bits each. The chaining value is then divided into four 128-bit words, and at each round
two words enter the nonlinear round functions and affect the other two:

Si+1 = Vi Ti+1 = Si ⊕ F ′i (Ti) Ui+1 = Ti Vi+1 = Ui ⊕ Fi(Vi)

The nonlinear function F and F ′ are composed of four full rounds of AES, with 4 subkeys from
the message expansion:

Fi(x) = P (k3
0,i ⊕ P (k2

0,i ⊕ P (k1
0,i ⊕ P (k0

0,i ⊕ x))))

F ′i (x) = P (k3
1,i ⊕ P (k2

1,i ⊕ P (k1
1,i ⊕ P (k0

1,i ⊕ x))))

where P is one AES round (without the AddRoundKey operation).
In this section we use an alternative description of SHAvite-3 512 with only two variables per

round, as shown in Figure 2. We have

Si = Yi−1 Ti = Xi Ui = Xi−1 Vi = Yi

The message expansion is detailed in Appendix D.
Note that with the original key schedule of SHAvite-3 , a specific set of message, salt, and

counter leads to all the subkeys being zero [10,11]. Thus, the key schedule was tweaked for
the second round of the SHA-3 competition. Our attack applies both to the original message
expansion and to the tweaked version.

4.2 Cancellation Attacks on SHAvite-3512

The cancellation path is described in Table 9, which is an extension of Table 2. We use the
cancellation property twice to control the diffusion. Note that we do not have to specify the
values of y, z, and w. Like in the Lesamnta attack, this path is a truncated differential, and we
use constraints on the state to enforce that it is followed. Moreover, the transitions x→ x1 and
x1 → x2 are known because the key is known.

Note that the round functions of SHAvite-3 512 are not defined as F (k, x) = P (k ⊕ x) for a
fixed permutation P . Instead, each function takes 4 keys and it is defined as:

F (k0
i , k

1
i , k

2
i , k

3
i , x) = P (k3

i ⊕ P (k2
i ⊕ P (k1

i ⊕ P (k0
i ⊕ x))))

where P is one AES round. In order to apply the cancellation property to SHAvite-3 512, we need
that the subkeys k1, k2, k3 of two functions be equal, so that Fi(x) collapses to P ′(k0

i ⊕ x) and
Fj to P ′(k0

j ⊕x), where P ′(x) , P (k3
i ⊕P (k2

i ⊕P (k1
i ⊕P (x)))) = P (k3

j ⊕P (k2
j ⊕P (k1

j ⊕P (x)))).



Table 9. Cancellation Property on 9 Rounds of SHAvite-3 512

i Si Ti Ui Vi

0 ? x2 ? x
1 x - x2 x1
2 x1 x - - x1 → x2
3 - - x - x→ x1
4 - - - x
5 x - - y x→ y
6 y x - z y → z
7 z - x w x→ y, z → w
8 w z - ?
9 ? - z ? z → w

FF ? x2 ? ?

Table 10. Values of the Registers for the 9-round Cancellation Property of SHAvite-3 512

i Xi/Yi

X0 b⊕ F3(c)⊕ F ′1(c⊕ F2(d⊕ F ′3(a)))
Y0 d⊕ F ′3(a)⊕ F1(a⊕ F ′2(b⊕ F3(c)))
X1 a⊕ F ′2(b⊕ F3(c))
Y1 c⊕ F2(d⊕ F ′3(a))
X2 d⊕ F ′3(a)
Y2 b⊕ F3(c)
X3 c
Y3 a
X4 b
Y4 d
X5 a⊕ F4(b)
Y5 c⊕ F ′4(d)
X6 d⊕ F5(a⊕ F4(b))
Y6 b⊕ F ′5(c⊕ F ′4(d))
X7 c⊕ F ′4(d)⊕ F6(d⊕ F5(a⊕ F4(b)))
Y7 a⊕ F4(b)⊕ F ′6(b⊕ F ′5(c⊕ F ′4(d)))
X8 b⊕ F ′5(c⊕ F ′4(d))⊕ F7(c)
Y8 d⊕ F5(a⊕ F4(b))⊕ F ′7(a⊕ F4(b)⊕ F ′6(b⊕ F ′5(c⊕ F ′4(d))))
X9 a⊕ F4(b)⊕ F ′6(b⊕ F ′5(c⊕ F ′4(d)))⊕ F8(b⊕ F ′5(c⊕ F ′4(d))⊕ F7(c))

In order to express the constraints needed for the cancellation properties, we look at the
values of the registers for this truncated differential. In Table 10, we begin at round 4 with
(S4, T4, U4, V4) = (Y3, X4, X3, Y4) = (a, b, c, d), and we compute up to round 9.

We have a cancellation property on 9 rounds under the following conditions:

Round 7 We have F ′4(d)⊕ F6(d⊕ F5(a⊕ F4(b))). They cancel if:
F5(a⊕ F4(b)) = k0

1,4 ⊕ k0
0,6 and (k1

1,4, k
2
1,4, k

3
1,4) = (k1

0,6, k
2
0,6, k

3
0,6).

Round 9 We have F ′6(b⊕ F ′5(c⊕ F ′4(d)))⊕ F8(b⊕ F ′5(c⊕ F ′4(d))⊕ F7(c)). They cancel if:
F7(c) = k0

1,6 ⊕ k0
0,8 and (k1

1,6, k
2
1,6, k

3
1,6) = (k1

0,8, k
2
0,8, k

3
0,8).

Therefore, the truncated differential is followed if:

F5(a⊕ F4(b)) = k0
1,4 ⊕ k0

0,6 F7(c) = k0
1,6 ⊕ k0

0,8 (C0)

(k1
1,4, k

2
1,4, k

3
1,4) = (k1

0,6, k
2
0,6, k

3
0,6) (k1

1,6, k
2
1,6, k

3
1,6) = (k1

0,8, k
2
0,8, k

3
0,8) (C1)

The constraints for the cancellation at round 7 are easy to satisfy and allow a 7-round attack
on SHAvite-3 512. However, for a 9-round attack we have more constraints on the subkeys, and
this requires special attention.



4.3 Dealing with the Key Expansion

Let us outline an algorithm to find a suitable message (recall that SHAvite-3 512 is used in a
Davies-Meyer mode) for a given salt and counter value. We have to solve a system involving
linear and non-linear equations, and we use the fact that the system is almost triangular. We
note that it might be possible to improve our results using the technique of Khovratovich,
Biryukov and Nikolić [7] to find a good message efficiently.

For the cancellation attack on 9-round SHAvite-3 512, we need to satisfy a 768-bit condition
on the subkeys, i.e.:

(k1
1,4, k

2
1,4, k

3
1,4) = (k1

0,6, k
2
0,6, k

3
0,6) (k1

1,6, k
2
1,6, k

3
1,6) = (k1

0,8, k
2
0,8, k

3
0,8) (C1)

Or in rk[·] terms:

rk[148, . . . , 159] = rk[196, . . . , 207] rk[212, . . . , 223] = rk[260, . . . , 271]

We are actually trying to solve a system of equation with:

– 224 variables: tk[128..159], tk[192..223] and rk[128..287]
– 192 equations from the key schedule (64 non-linear and 128 linear)
– 24 constraints

Therefore we have 8 degrees of freedom. The relations between the variables are shown in
Figure 3, while the full key expansion of SHAvite-3 512 is described in Appendix D.

rk[256 ... 259,260 ... 263,264 ... 267,268 ... 271,272 ... 275,276 ... 279,280 ... 283,284 ... 287]

LFSR2: rk[i]=rk[i−32]⊕rk[i−7]

rk[224 ... 227,228 ... 231,232 ... 235,236 ... 239,240 ... 243,244 ... 247,248 ... 251,252 ... 255]

LFSR1: rk[i]=tk[i−32]⊕rk[i−4]

tk[192 ... 195,196 ... 199,200 ... 203,204 ... 207,208 ... 211,212 ... 215,216 ... 219,220 ... 223]

AES AES AES AES AES AES AES AES

rk[192 ... 195,196 ... 199,200 ... 203,204 ... 207,208 ... 211,212 ... 215,216 ... 219,220 ... 223]

LFSR2: rk[i]=rk[i−32]⊕rk[i−7]

rk[160 ... 163,164 ... 167,168 ... 171,172 ... 175,176 ... 179,180 ... 183,184 ... 187,188 ... 191]

LFSR1: rk[i]=tk[i−32]⊕rk[i−4]

tk[128 ... 131,132 ... 135,136 ... 139,140 ... 143,144 ... 147,148 ... 151,152 ... 155,156 ... 159]

AES AES AES AES AES AES AES AES

rk[128 ... 131,132 ... 135,136 ... 139,140 ... 143,144 ... 147,148 ... 151,152 ... 155,156 ... 159]

(c3, c2, c1, c0)

Fig. 3. Constraints in the Key Expansion of SHAvite-3 512

Initial constraints in pink , constraints from steps 1 to 3 in yellow , constraints from step 4 in
green

Propagation of the Constraints First, we propagate the constraints and deduce new equali-
ties between the variables. Figure 3 shows the initial constraints and the propagated constraints.

1. The non-linear equations of the key-schedule give:

tk[156..159] = AESR
(

(rk[157, 158, 159, 156])⊕ (salt[12..15])
)

tk[204..207] = AESR
(

(rk[205, 206, 207, 204])⊕ (salt[12..15])
)

since rk[156..159] = rk[204..207], we know that tk[156..159] = tk[204..207]. Similarly, we get
tk[148..159] = tk[196..207]



2. From the key expansion, we have rk[191] = rk[223]⊕rk[216], and rk[239] = rk[271]⊕rk[264].
Since we have the constraints rk[223] = rk[271] and rk[216] = rk[264], we can deduce that
rk[191] = rk[239] Similarly, we get rk[187..191] = rk[235..239].

3. From the linear part of the expansion, we have rk[186] = rk[190] ⊕ tk[158] and rk[234] =
rk[238] ⊕ tk[206]. We have seen that rk[190] = rk[238] at step 2 and tk[158] = tk[206] at
step 1, therefore rk[186] = rk[234] Similarly, we get rk[176..186] = rk[224..234].

4. Again, from the linear part of the key expansion, we have rk[211] = rk[218] ⊕ rk[186] and
rk[259] = rk[266] ⊕ rk[234]. We have seen that rk[186] = rk[234] at step 3 and we have
rk[218] = rk[266] as a constraint, thus rk[211] = rk[259] Similarly, we obtain rk[201..211] =
rk[249..259] Note that we have rk[201..207] = rk[153..159] as a constraint, so we must have
rk[249..255] = rk[153..159].

Finding a Solution To find a solution to the system, we use a guess and determine technique.
We guess 11 state variables, and we show how to compute the rest of the state and check for
consistency. Since we have only 8 degrees of freedom, we expect the random initial choice to be
valid once out of 232×3 = 296 times. This gives a complexity of 296 to find a good message.

– Choose random values for rk[200], rk[204..207], rk[215..216], rk[220..223]
– Compute tk[220..223] from rk[220..223]
– Compute rk[248..251] from tk[220..223] and rk[252..255] (= rk[204..207])
– Deduce rk[201..203] = rk[249..251], so rk[200..207] is known
– Compute tk[152..159] from rk[152..159] (= rk[200..207])
– Compute rk[190..191] from rk[215..216] and rk[222..223]
– Compute rk[186..187] from rk[190..191] and rk[158..159]
– Compute rk[182..183] from rk[186..187] and rk[154..155]
– Compute rk[214] from rk[207] and rk[182]
– Compute rk[189] from rk[214] and rk[219]; then rk[185] and rk[181]
– Compute rk[213] from rk[206] and rk[181]
– Compute rk[188] from rk[213] and rk[220], then rk[184] and rk[180]
– Compute rk[212] from rk[205] and rk[180]
– Compute rk[219] from rk[212] and rk[187]
– Compute rk[208, 209] from rk[215, 216] and rk[183, 184]

– We have tk[216..219] = AESR
(

(rk[216..219])
)

with a known key. Since rk[216] and rk[219]

are known, we know that tk[216..219] is a linear subspace of dimension 64 over F2.
– Similarly, tk[208..211] is in a linear subspace of dimension 64 (rk[208] and rk[209] are known).
– Moreover, there are linear relations between tk[216..219] and tk[208..211]: we can com-

pute rk[240..243] from tk[208..211] and rk[236..239]; rk[244..247] from rk[240..243] and
tk[212..215]; tk[216..219] from rk[244..247] and rk[248..251].

– On average, we expect one solution for tk[216..219] and tk[208..211].
– At this point we have computed the values of rk[200..223]. We can compute tk[200.223] and
rk[228..255].

– Compute rk[176..179] from rk[201..204] and rk[208..211]
– Since rk[224..227] = rk[176..179], we have a full state rk[224..255]. We can check consistency

of the initial guess.

4.4 9-round Attacks

The cancellation property allows to find a key/message pair with a given value on the last 128
bits. The attack is the following: first find a message that fulfills the conditions on the subkeys,
and set a, b and c at round 4 satisfying the cancellation conditions (C0). Then the second output
word is:

T9 ⊕ T0 = X9 ⊕X0 = a⊕ F4(b)⊕ b⊕ F3(c)⊕ F ′1
(
c⊕ F2(d⊕ F ′3(a))

)



If we set
d = F−1

2

(
F ′−1

1

(
H ⊕ a⊕ F4(b)⊕ b⊕ F3(c)

)
⊕ c
)
⊕ F ′3(a)

we have X9 ⊕X0 = H. Each key (message) can be used with 2128 different a,b,c, and the cost
of finding a suitable key is 296. Hence, the amortized cost for finding a 128-bit partial preimage
is one compression function evaluation. The cost of finding a full preimage for the compression
function is 2384, as described in Algorithm 1.

Algorithm 1 SHAvite-3 512 cancellation attack on 9 rounds

Input: Target value H
Output: A message M and a chaining value X s.t. F (X,M) = H
Running Time: 2384

1: loop
2: Find M such that (k11,4, k

2
1,4, k

3
1,4) = (k10,6, k

2
0,6, k

3
0,6) and (k11,6, k

2
1,6, k

3
1,6) = (k10,8, k

2
0,8, k

3
0,8)

3: c← F−1
7 (k01,6 ⊕ k00,8)

4: for all a do
5: b← F−1

4 (F−1
5 (k01,4 ⊕ k00,6)⊕ a)

6: Compute d as F−1
2

(
F ′−1
1

(
H4 ⊕ a⊕ F4(b)⊕ b⊕ F3(c)

)
⊕ c

)
⊕ F ′3(a)

7: Compute 4 rounds backwards and 5 rounds forwards from a, b, c, d
8: Then H4 = X0 ⊕X9 = H4

9: if H = H then
10: return X,M
11: end if
12: end for
13: end loop

Second Preimage Attack on the Hash Function We can use the preimage attack on
the compression function to build a second preimage attack on the hash function reduced to
9 rounds. Using a generic unbalanced meet-in-the-middle attack the complexity is about 2448

compression function evaluations and 264 memory. Note that we cannot find preimages for the
hash function because we cannot find correctly padded message blocks.

5 Conclusion

In this paper we explore new ways to use efficiently degree of freedom in generalized Feistel
structures. In addition to the attacks on Lesamnta and SHAvite-3 512, we describe an attack
against SMS4 in Appendix B. We summarize the obtained attacks in Tables 11, 12, and 13.

Table 11. Summary of the Attacks on the Lesamnta Hash Function

Lesamnta-256 Lesamnta-512

Attack Rounds Time Memory Time Memory

Generic Collision [6] 16 297 - 2193 -

Second Preimage [6] 16 2193 - 2385 -

Collision (Sect. 3.3) 22 296 - 2192 -

Second Preimage (Sect. 3.3) 22 2192 - 2384 -

Collision (Sect. 3.3) 24 296 264 2192 2128

Second Preimage (Sect. 3.3) 24 2192 264 2384 2128

Specific Collision (Sect. 3.4) 24 2112 - 2224 -

Second Preimage (Sect. 3.4) 24 2240 - N/A



Table 12. Summary of the Attacks on SHAvite-3 512

Comp. Fun. Hash Fun.

Attack Rounds Time Memory Time Memory

Second Preimage [4] 8 2384 - 2448 264

Second Preimage (Sect. 4.4) 9 2384 - 2448 264

Second Preimage (extension of this work) [5] 10 2480 - 2496 216

Second Preimage (improving [5] with Sect. 4.3) 10 2448 - 2480 232

Second Preimage (improving [5] with Sect. 4.3) 10 2416 264 2464 264

Second Preimage (improving [5] with Sect. 4.3) 10 2384 2128 2448 2128

Collision1 (extension of this work) [5] 14 2192 2128 N/A

Preimage1 (extension of this work) [5] 14 2384 2128 N/A

Preimage1 (extension of this work) [5] 14 2448 - N/A

1 Chosen salt attacks

Table 13. Summary of the Attacks on SMS4

Attack Rounds Data Time

Boomerang [13] 18 2120 ACPC 2120

Rectangle [13] 18 2124 CP 2124

Differential [14] 21 2118 CP 2126.6

Differential [13] 22 2118 CP 2125.7

Linear [13] 22 2117 KP 2117

Truncated Differential (Sect. B.1) 19 2104 CP 2104
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A An Integral Attack against 21-Round Lesamnta

In this section, we show the applicability of the cancellation technique to block ciphers analysis
by giving an application to the implicit block cipher of Lesamnta. The main difference with the
hash function attacks is that in a block cipher the attacker does not know the key, and cannot
build a message satisfying the cancellation conditions. Therefore, we use an attack based on
integral cryptanalysis. The basic idea is to use several sets of messages, so that the messages in
one of the sets follow the cancellation path.

In the original submission document of Lesamnta [6] a 19-round Square distinguisher
is described. This Square is very straightforward, and suggests an efficient distinguisher for
Lesamnta. However, by experimenting with reduced versions, we found that the original Square
is faulty. We first give an explanation of why the Square attack does not work. Then we suggest
an improved and corrected 20-round integral distinguisher attack which relies on the cancellation
property. This distinguisher gives a 21-round key-recovery attack using partial decryption of the
last round. We use the term integral cryptanalysis rather than Square to describe our new
attack, because we use a higher order property.

In Table 14, the symbols b1, b2, b3 are used to denote three variables that independently take
all possible values. So, in the first round, T0, U0, V0 take all the 23n/4 possible values. At round
1, we have S1 = F1(U0)⊕V0. We see that F1(U0)⊕V0, T0, U0 take all possible values, so we can
reuse the symbol b3 for S1. This can be seen as a change of variables.

Starting from round 4, we have two values denoted by b3 in the original Square. This is
used to denote that R4, S4, T4 take all possible values, while S4, T4, U4 also take all possible
values. However, this leads to a contradiction later on because there is an implicit change of
variables when we reuse symbols and this cannot be done for a variable that appears twice.
The first problem appears at round 7. We have that S6, T6, V6 and S6, U6, V6 take all possible
values. The original Square suggests that this implies that S7, S6, T6 take all possible values,
where S7 = F7(U6) ⊕ V6. However this is not true in general. For instance, we could have
U6 = F−1

7 (T6 ⊕ V6). This is compatible with the assumptions of independence but in this case
we have S7 = T6 and S7, S6, T6 do not take all possible values.

Actually the Square described in this attack can be detected after 18 rounds, but not after
19 rounds.

Table 14. The originally suggested Square, and its actual development. We see that the
independence assumptions of round 7 do not hold.

i Si Ti Ui Vi

0 - b1 b2 b3
1 b3 - b1 b2
2 b2 b3 - b1
3 b1 b2 b3 -
4 b3 b1 b2 b3
5 b3 b3 b1 b2
6 b2 b3 b3 b1
7 b1 b2 b3 b3

Suggested in [6]

i Si Ti Ui Vi

0 - b1 b2 b3
1 b3 - b1 b2
2 b2 b3 - b1
3 b1 b2 b3 -
4 F (b3) b1 b2 b3
5 F (b2)⊕ b3 F (b3) b1 b2
6 F (b1)⊕ b2 F (b2)⊕ b3 F (b3) b1
7 F (F (b3))⊕ b1 F (b1)⊕ b2 F (b2)⊕ b3 F (b3)

Actual Square

http://eprint.iacr.org/


A.1 The New Attack

Our new attack is based on the cancellation path of Table 15. Starting with (S0, T0, U0, V0) =
(a, b, c, d), we have the following condition:

Round 8: we have F7(F4(F1(b)⊕ c)⊕ F0(c)⊕ d)⊕ F3(F0(c)⊕ d). They cancel if:
F4(F1(b)⊕ c) = K3 ⊕K7

Table 15. Cancellation path for the integral attack on Lesamnta

i Xi(= Si)

−3 d
−2 c
−1 b
0 a
1 F0(c)⊕ d
2 F1(b)⊕ c
3 F2(a)⊕ b
4 F3(F0(c)⊕ d)⊕ a
5 F4(F1(b)⊕ c)⊕ F0(c)⊕ d
6 F5(F2(a)⊕ b)⊕ F1(b)⊕ c
7 F6(F3(F0(c)⊕ d)⊕ a)⊕ F2(a)⊕ b
8 F7(F4(F1(b)⊕ c)⊕ F0(c)⊕ d)⊕ F3(F0(c)⊕ d)⊕ a

Since we do not know the value of K3 ⊕K7, we cannot build a message that would satisfy
the cancellation condition with probability one. However, in an integral attack, if we iterate
over all values of c while b if fixed, we know that for one value there is a cancellation. Moreover,
for each c, we can iterate over d and study properties of the set of ciphertexts generated in this
way.

More precisely, for a random choice of A and B, we define the following sets of messages:

SC = {(A,B,C, d) : d ∈ F264} (d ∈ F2128 for Lesamnta-512)

We consider 264 sets (2128 for Lesamnta-512) with all possible values of C, while A and B are
fixed. We know that one particular set satisfies F4(F1(B)⊕C) = K3⊕K7. For this set, we show
the dependencies of the state on d in Table 16. Note that:

– At round 8, the values F7(d)⊕ F3(d) cancels out for this particular set.

– At round 14 we have F13(F6(F3(d))) ⊕ F9(F6(F3(d))). This has the special property that
each value is taken an even number of times, according to Property (ii).

– At round 17, we have F16

(
F13

(
F6(F3(d))

)
⊕F9

(
F6(F3(d))

))
⊕F12

(
F9(F6(F3(d)))

)
⊕d. When

we sum this over all d’s, this gives:⊕
d

F16

(
F13

(
F6(F3(d))

)
⊕ F9

(
F6(F3(d))

))
⊕
⊕
d

F12(F9(F6(F3(d))))⊕
⊕
d

d

The first term sums to zero because each input to F16 is taken an even number of times (cf.
Property (iii)), and the two last terms sum to zero because they are permutations of d.

Since X17 is the fourth output word after 20 rounds (X17 = V20), this gives an integral property
on 20 rounds. This has been experimentally verified on reduced versions.



Table 16. Integral Attack. We only gives the dependencies in d.

i Xi

−3 d
−2 -
−1 -
0 -
1 d
2 -
3 -
4 F3(d)
5 d
6 -
7 F6(F3(d))
8 F7(d)⊕ F3(d)
9 d
10 F9(F6(F3(d)))
11 F6(F3(d))
12 F11(d)
13 F12(F9(F6(F3(d))))⊕ d
14 F13(F6(F3(d)))⊕ F9(F6(F3(d)))
15 F14(F11(d))⊕ F6(F3(d))
16 F15(F12(F9(F6(F3(d))))⊕ d)⊕ F11(d)
17 F16(F13(F6(F3(d)))⊕ F9(F6(F3(d))))⊕ F12(F9(F6(F3(d))))⊕ d

This property can be used to attack the block cipher of Lesamnta. One has to encipher the
2n/4 plaintexts in the sets SC for each C, and to compute the sum of V20 over each set. If the
data was generated using the compression function of Lesamnta, then at least one of the sets
SC give a zero sum. Otherwise, there is only a probability 1/e that all the sums are non-zero.
Moreover, when a set with a zero sum is found, it is possible to verify that this is due to the
cancellation property, by building a new set S∗C with the same C and B, but a different value
A. As seen earlier, the cancellation condition does not depend on A, so this new set also gives
a zero sum if C is the correct value for the cancellation condition.

This gives a distinguisher on 20-round Lesamnta with complexity 2n/2. Moreover, using
partial decryption of the last round, it can be extended to a key recovery attack on 21 rounds
with complexity 23n/4.

B An Attack on 19-Round SMS4

SMS4 is a block cipher used in WAPI (the Chinese national standard for wireless networks) [3],
based on a generalized Feistel network. SMS4 accepts a 128-bit plaintext and a 128-bit user
key as inputs, and is composed of 32 rounds. In each round, the least significant three words
of the state are XORed with the round key and the result passes the F transformation. The
F transformation uses an 8-bit to 8-bit bijective SBox four times in parallel to process each
byte, then the concatenated bytes are processed using a linear transformation L. The general
structure is described by Figure 4, and can be written as:

Si+1 = Vi ⊕ F (Si ⊕ Ti ⊕ Ui ⊕Ki) Ti+1 = Si Ui+1 = Ti Vi+1 = Ui

where the Ki is the ith round subkey.

B.1 New Attack on SMS4

Our attack on SMS4 is not based on the same cancellation property as used to attack Lesamnta
and SHAvite-3 512. However, it shares the same core idea: we describe a generic attack on the



Si+1Ti+1Ui+1Vi+1

SiTiUiVi

Ki

⊕Fi⊕

SMS4 structure

Fig. 4. The Generalized Feistel structure of SMS4

Feistel structure based on a truncated differential, using available degrees of freedom to control
the non-linearity. While this attack is not as efficient as the best attacks on SMS4 , we believe
it is interesting because it is generic in the round function.

Our attack is based on the following truncated differential on four rounds:

i Si Ti Ui Vi

0 x x a b x = a⊕ b
1 x a b x
2 a b x x b→ u let c = a⊕ u
3 b x x c c→ u let d = b⊕ u
4 x x c d x = c⊕ d

In this truncated differential, we do not specify the values of a, b, c, d and u. We start with
any difference (x, x, a, b) with x = a ⊕ b, and we end up with a difference of the same form:
(x, x, c, d) with x = c ⊕ d. The only condition for this truncated differential to be followed is
that the transitions at step 2 and 3, b→ u and c→ u have to go to the same u. Since we do not
care about the particular value of u, this happens with probability 2−32 (the words are 32-bit
wide).

We can iterate this truncated differential four time, and add two extra rounds at the end.
This gives the following characteristic:

(x, x, a, b)|a⊕b=x
18rounds−−−−−−→ (e, f, x, x)|e⊕f=x with probability 2−128

For a random mapping, this characteristic has probability 2−96. Therefore, to detect the
bias, we need a few times 264+96 = 2160 input pairs.

We can build the input pairs using structures: for a random A and B, we generate 264

messages Mi,j = (A ⊕ i ⊕ j, B ⊕ i ⊕ j, i, j), by varying i and j. This gives 2128 input pairs for
the differential: each pair Mi,j ,Mi′,j′ has a difference (i⊕ j ⊕ i′ ⊕ j′, i⊕ j ⊕ i′ ⊕ j′, i⊕ i′, j ⊕ j′).
If we repeat this with a few times 232 choices of A and B, we have enough pairs to detect the
bias. This gives a distinguisher on 18 rounds of SMS4 with a few times 296 chosen plaintexts.
Experiments on reduced versions confirm this analysis.

This distinguisher can be used for a 19-round attack, using partial decryption of the last
round. The corresponding differential is:



i Si Ti Ui Vi

0 x x a b x = a⊕ b
...
4 x x c d x = c⊕ d
...

16 x x e f x = e⊕ f
17 x e f x
18 e f x x
19 f x x ?

We can recover the subkey of rounds 19 with the following algorithm:

1. Repeat 240 times the following:
2. Choose a random A and B
3. Query the block cipher on the 264 messages Mi,j = (A⊕ i⊕ j, B ⊕ i⊕ j, i, j)
4. Let the plaintext/ciphertext be (qi,j , ri,j , si,j , ti,j) → (αi,j , βi,j , γi,j , δi,j), respectively. Store

the plaintext/ciphertext pair of ((qi,j , ri,j , si,j , ti,j), (αi,j , βi,j , γi,j , δi,j)) in a hash table in-
dexed by qi,j ⊕ αi,j , qi,j ⊕ βi,j .

5. We search for collisions in the table, each offering a pair of plaintexts and ciphertexts
(qi,j , ri,j , si,j , ti,j) → (αi,j , βi,j , γi,j , δi,j) and (qi′,j′ , ri′,j′ , si′,j′ , ti′,j′) → (αi′,j′ , βi′,j′ , γi′,j′ , δi′,j′)
for which qi,j ⊕ qi′,j′ = αi,j ⊕αi′,j′ = βi,j ⊕ βi′,j′(= ri,j ⊕ ri′,j′). This defines the difference x.
There should be 263 collisions on average.

6. For each of these pairs, obtain the input difference (f) to round 19, and the expected output
difference (e⊕δi,j⊕δi′,j′), and retrieve the one subkey suggestion (on average) for the subkey
of round 19 which satisfies the differential transition3.

The right subkey is expected to be suggested 271 +239 times, while the wrong ones are expected
to be suggested 271 times. With very high probability (of more than 85%), the most suggested
subkey is the correct one.

This gives a key-recovery attack on 19-round SMS4 with 2104 chosen plaintexts, and a
complexity of 2104 time.

C Implementation of the 24-round Lesamnta Attack

To verify our attacks, we implemented the attack on 24-round Lesamnta based on symmetry
properties of the round function. We cannot find a full preimage because the complexity is too
high, but we can show a partial preimage to prove the validity of our attack:

Chaining Value

33212102 5c23803f 00957df0 94a1d777

4953d309 0b3b6624 8c8d523c b14eec82

Message

904fe6d0 cdb99073 1949261e de5b3575

70e209ed 1fe0a8d0 e7bc6031 6a88ceef

Output

03874543 a3a0eef7 3665a8bd 163bdaea

8a227d57 a6b6210f ffffffff ffffffff

D SHAvite-3 512 Message Expansion

The message expansion of SHAvite-3 512 accepts a 1024-bit message block, a 128-bit counter,
and a 512-bit salt. All are treated as arrays of 32-bit words (of 32, 4, and 16 words, respectively),
which are used to generate 112 subkeys of 128 bits each, or a total of 448 32-bit words.

3 Note that we only need the differential table of the 8-bit S-Box for this step.



Let rk[·] be an array of 448 32-bit words whose first 32 words are initialized with the message.
After the initialization of rk[0, . . . , 31], two processes are repeated, a nonlinear one (which
generates 32 new words using the AES round function) and a linear one (which generates the
next 32 words in a linear manner). These processes are repeated 6 times, and then the nonlinear
process is repeated once more. The computation of rk[·] is done as follows:

Using the counter: the counter is used at 4 specific positions.
In order to simplify the description, we define a new table holding the preprocessed counter:
ck[ 32] = cnt[0], ck[ 33] = cnt[1], ck[ 34] = cnt[2], ck[ 35] = cnt[3]
ck[164] = cnt[3], ck[165] = cnt[2], ck[166] = cnt[1], ck[167] = cnt[0]
ck[440] = cnt[1], ck[441] = cnt[0], ck[442] = cnt[3], ck[443] = cnt[2]
ck[316] = cnt[2], ck[317] = cnt[3], ck[318] = cnt[0], ck[319] = cnt[1]
For all the other values, ck[i] = 0.

AES rounds: for i ∈ {0, 64, 128, 192, 256, 320, 384}+ {0, 4, 8, 12, 16, 20, 24, 28}:
tk[(i, i+ 1, i+ 2, i+ 3)] = AESR(rk[(i+ 1, i+ 2, i+ 3, i)]⊕ salt[(i, i+ 1, i+ 2, i+ 3) mod 16])

Linear Step 1: for i ∈ {32, 96, 160, 224, 288, 352, 416}+ {0, . . . , 31}:
rk[i] = tk[i− 32]⊕ rk[i− 4]⊕ ck[i]

Linear Step 2: for i ∈ {64, 128, 192, 256, 320, 384}+ {0, . . . , 31}:
rk[i] = rk[i− 32]⊕ rk[i− 7]

Once rk[·] is initialized, its 448 words are parsed as 112 words of 128-bit each, which are the
subkeys (14 double quartets of 128-bit words each), i.e.:

RK0,i = (k0
0,i, k

1
0,i, k

2
0,i, k

3
0,i) =

(
(rk[32 · i ], rk[32 · i+ 1], rk[32 · i+ 2], rk[32 · i+ 3]),

(rk[32 · i+ 4], rk[32 · i+ 5], rk[32 · i+ 6], rk[32 · i+ 7]),

(rk[32 · i+ 8], rk[32 · i+ 9], rk[32 · i+ 10], rk[32 · i+ 11]),

(rk[32 · i+ 12], rk[32 · i+ 13], rk[32 · i+ 14], rk[32 · i+ 15])
)

RK1,i = (k0
1,i, k

1
1,i, k

2
1,i, k

3
1,i) =

(
(rk[32 · i+ 16], rk[32 · i+ 17], rk[32 · i+ 18], rk[32 · i+ 19]),

(rk[32 · i+ 20], rk[32 · i+ 21], rk[32 · i+ 22], rk[32 · i+ 23]),

(rk[32 · i+ 24], rk[32 · i+ 25], rk[32 · i+ 26], rk[32 · i+ 27]),

(rk[32 · i+ 28], rk[32 · i+ 29], rk[32 · i+ 30], rk[32 · i+ 31])
)
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