
Analysis of the Collision Resistance of
RadioGatún using Algebraic Techniques

Charles Bouillaguet and Pierre-Alain Fouque

Ecole normale supérieure, CNRS, INRIA

Abstract. In this paper, we present some preliminary results on the
security of the RadioGatún hash function. RadioGatún has an internal
state of 58 words, and is parameterized by the word size, from one to 64
bits. We mostly study the one-bit version of RadioGatún since according
to the authors, attacks on this version also affect the reasonably-sized
versions. On this toy version, we revisit the claims of the designers and
first improve some results. Secondly, given a differential path, we show
how to find a message pair colliding more efficiently than the strategy
proposed by the authors using algebraic techniques. We experimented
this strategy on the one-bit version since we can efficiently find differ-
ential path by brute force. Even though the complexity of this collision
attack is higher than the general security claim on RadioGatún〈1〉, it is
still less than the birthday paradox on the size of the internal state.

1 Introduction

RadioGatún is a new hash function, proposed in 2006 by Bertoni, Daemen,
Peeters and Van Assche at the Second NIST Hash Workshop. This hash function
is very interesting to study since its design is not similar to traditional hash
functions. It is not a blockcipher-based hash function such as the Davies-Meyer
construction of compression function and it does not use the Merkle-Damg̊ard
paradigm to transform a compression function into a hash function. This hash
function improves a previous design used in the Panama hash function [12].
RadioGatún has an internal state of 58 words; the size of those words, from one
to the recommended 64 bits, define the actual size of the internal state.

1.1 Related Work

The Sponge construction. RadioGatún is the current hash function whose
design resemble the sponge construction most. This construction differ signifi-
cantly from the SHA family : the internal building block transform the internal
state bijectively, and there is no message expansion: the input blocks are simply
injected into the state. The size of the input block is smaller than the internal
state, which is also much bigger than the security parameter. The output can be
of arbitrarily length.

Sponge functions were introduced in [2, 4], to serve as a reference model for
the security of hash functions. Random sponges are an abstraction of a random

function with a finite internal state. In [2], random sponges were shown to be
indifferentiable from a random oracle up to a number of query which depends
on the “capacity” of the sponge, a part of its internal state.

The Backtracking Attack. The security of the RadioGatún hash function
against differential attacks has been initially studied by Bertoni et al. in [3]. In
fact, the main security analysis has been done on the one-bit version since for
this version, differential paths can be found efficiently. If the one-bit version was
structurally broken, the the bigger version would be likely to be broken as well.
In [3], the authors describe a strategy to find two colliding messages given a
differential path and named it the trail backtracking attack. This kind of attack
improves the statistical attack which tries as many messages as the inverse of
the probability of the differential trail. Such an attack has also been mounted
on Panama [19, 11] and on Grindahl in [18].

Message Modification and Algebraic Techniques. Expressing the prob-
lem of finding a collision as the problem of solving a set of equations is an old
technique, that was used to break MD4 first [13]. Message modification was used
with great success to attack hash functions from the MD and SHA families [24,
22, 25, 23]. More advanced algebraic techniques, such as Gröbner bases, were
used by [21] to improve the message modification part of existing attack against
SHA-1.

1.2 Our Results

Our main object of study is the one bit version, RadioGatún〈1〉. We show that
the backtracking attack can be performed more efficiently and without any back-
tracking. We use Gröbner basis algorithms to compute the set of all states from
which colliding messages can be found using a given trail. The main drawback
of this attack is that once we have this set, we need other techniques to go from
the initial vector to these states. Actually, our method uses statistical trials until
one satisfies the equations characterizing the set. The techniques we use heavily
rely on the fact that the non-linear function is quadratic and so the differential
of such function gives linear conditions on the states.

RadioGatún〈1〉 has an internal state of 58 bits, and it is conjectured in [3]
that differential attacks would cost at least 246. A first technique using only linear
algebra yields collisions in 227 evaluations of the round function. We present a
second technique using more sophisticated algebraic tools, most notably Gröbner
Basis computations, that produces collisions in less than 224.5 evaluations of the
round function, for any fixed IV. This is more than one million times faster
than what the authors of RadioGatún expected. Both attacks are faster than
the birthday paradox on the size of the internal state, but the do not break the
security claim of the designers of RadioGatún, since they took a high security
margin.

The first attack is trivially applicable to RadioGatún〈`w〉 for any value of
`w. The status of the second attack is less clear, but we give some arguments
supporting the idea that it will still be applicable when `w > 1.

1.3 Organization of the Paper

In section 2, we describe the RadioGatún hash function. Then, we recall the
original backtracking attack on RadioGatún presented by its authors and present
some surprising experimental results. In section 4, we show how we can improve
the backtracking attack using only simple linear algebra. In section 5 and that
we can also remove the backtracking by propagating the linear conditions using
Gröbner basis computations. Consequently, we derive precise conditions on the
states from which colliding pairs can be found.

2 A Brief Description of RadioGatún

RadioGatún is parametrized according to the word length `w ranging from one
to the recommended 64 bits; RadioGatún〈`w〉 denote the `w-bit version of the
hash function.

RadioGatún is a hash function based on the sponge paradigm. During the
“absorbing” phase, it absorbs an arbitrary number of 3`W -bit input blocks, and
during the “squeezing” phase it produces an arbitrary long output. The input
message p is padded, so that its size is a multiple of the input block size. Radio-
Gatún absorbs the input message by alternatively XORing 3 message words into
the internal state and applying a bijective round function R until the padded
message is entirely read. In each round, `i = 3 · `W bits are absorbed. Note that
6 rounds are required in order that n/2 bits are hashed, where n is the size of
the internal state. This suggests that colliding message will span over at least
6 rounds. Then, the internal state is mixed using 16 blank iterations of R, and
finally the outputs is produced by alternatively extracting 2 words of the inter-
nal state and applying the round function until enough bits are extracted. The
security of a sponge function is not defined in terms of the digest length (since
it can be arbitrarily big), but rather according to another parameter called the
capacity, which is connected to the size of the internal state. For RadioGatún,
the authors made a “flat sponge claim” : More precisely, the authors claim that
(truncated) RadioGatún〈`W 〉 is as strong as a random sponge of capacity 19·`W .
This mean in particular that it should not be possible to find collisions in less
than 29.5·`W , while RadioGatún〈`W 〉 has an internal state of 58 words (58 · `W
bits).

From this description, it is easy to see that a collision into the state at the
end of the absorbing phase leads to a collision on the output bits. Consequently,
the authors of RadioGatún worry about such collisions and named them internal
collisions. However, in order to analyze such attacks, it seems that the important
parameter is not really the capacity, but rather the half of the size of the internal

state. We will see in the following, that if we take this security parameter, we
have attacks on the one-bit version of RadioGatún.

In RadioGatún, the state is split into two parts: the Mill and the Belt. The
role of the Belt is to have good long-term diffusion property and uses a simple
invertible linear update function, while the goal of the mill is to create confusion
and uses an invertible non-linear update function. The Belt and the Mill interact
with each other in each application of the round function.

The Mill a consists of 19 words a[i], and the Belt b is a matrix of 3 rows and
13 columns. An input block x consists of three words x[i]. All indices start from
0. We defer the reader to [3] for a complete description of the hash function.
Schematically a round of RadioGatún can be described in the following way:

b′ ← L1 (b)⊕ L3(a)⊕ L2(x)

a′ ← L4 ◦ γ
(
a⊕ L5 (x)

)
⊕ L6(b′)

where the Li are bijective linear mappings, and γ is a word-wise bijective quadratic

mapping defined by: γ(a)[i] = a[i]⊕a[i+ 1] ∧ a[i+ 2], where & denotes bitwise
AND, and indices are taken modulo 19.

3 The Trail Backtracking attack

3.1 Differential Trails

It seems natural to try a differential attack, considering the successes obtained
against the MD and SHA families. We call a differential over the round func-
tion a round differential ; it is a pair (∆i, ∆o). Its differential probability (DP)
is the proportion of states s such that R(s) ⊕ R(s ⊕ ∆i) = ∆o. A round dif-
ferential is possible if DP > 0. We may want to take into account not only
the internal state, but also the message block entering a round. In this case, a
round differential is a triple (∆i, ∆x, ∆o), and it is satisfied by a state s and a
message block x if the internal state after the injection of x satisfies the differ-
ential

(
∆i⊕Fi(∆x), ∆o

)
. The (restriction) weight of a differential is defined by:

Wr(∆i, ∆o) = − log2DP (∆i, ∆o).
Since we will have to track the difference between two parallel hashing pro-

cesses amongst several iterations of the round function, we are lead naturally to
the definition of a collision trail ; it describes the propagation of the difference on
the internal state, when given differences on the input block are applied. Such a
trail is a sequence of round differentials: (∆0

i , ∆
0
x, ∆

0
o), (∆

1
i , ∆

1
x, ∆

1
o), . . . , (∆

r
i , ∆

r
x, ∆

r
o),

where ∆0
i = 0, ∆r

o = 0, for all 1 ≤ k ≤ r,∆o
k−1 = ∆i

k. For each round k, the

trail enforces that if the internal states satisfy sk ⊕ s′k = ∆k
i , and the input

message blocks satisfy xk ⊕ x′
k

= ∆k
x, then after R the output state pair has

difference ∆k
o . If one finds an input state s0 and a sequence of message blocks

x0, . . . ,xr satisfying all the conditions imposed by the trail, then one has found
a collision. The probability that a random message follows the trail is the differ-
ential probability (DP) of the trail, and the differential weight of T is defined
by Wr(T) = − log2DP (T).

3.2 The Trail Backtracking Attack

Given a r-round differential trail and an initial state, a naive way to look for a
collision would be to try random sequences of r message blocks satisfying the
differences specified by the trail until a collision is found. The expected workload
of this attack is r/DP (T) evaluations of R. It may very well happen that the
input message passes some of the first rounds with the right difference, but then
diverges from the trail. This message has an interesting prefix, but in the naive
attack it is simply thrown away. Additionally, it is useless to hash the end of the
message, since we could know in the middle that it would not follow the trail.

In the backtracking attack, however, a right prefix is reused as much as
possible. It can be seen as an analogous of Wang’s message modification on
Davies-Meyer-type compression functions, but adapted to the alternating-input
framework. Suppose we have a message that passes the first k rounds, but not
the (k + 1)-th. Either the choice of xk was bad and by choosing another block
we can pass the (k + 1)-th round, or the previous choices of x0, . . . ,xk−1 were
bad, and we have to reconsider them (this is what we will call “backtracking”).

More precisely, if a right pair enters round k, the difference at the input of
the round function will be the same regardless of the value of the input block
xk, as long as it satisfies the specified difference ∆k

x. Therefore, this right pair
can be turned into 2`i right pairs by simply enumerating all possible values of
x. If this results in a right outgoing pair, we can proceed to the next round,
and otherwise, we have to backtrack to the previous round. This can be seen as
the depth-first exploration of a big 2`i -ary tree in which nodes are labeled with
internal state values and edges are labeled with message blocks (the root being
labeled by s0).

BT Attack(s, k) :
Given a right pair entering the k-th round, try to go further along a given trail T or
backtrack.

– If k = |T |, then a collision has been found
– For all possible input block xk do
• if the state s along with the input block x pass the k-th round differential of
T , i.e. if

R (s⊕ Fi (x))⊕R
((

s⊕∆k
i

)
⊕ Fi

(
x⊕∆k

x

))
= ∆k

o

then invoke BT Attack(R (s⊕ Fi (x)) , k + 1)

Fig. 1. Pseudocode of the trail backtracking attack.

It may very well happen that the input state s0, which can be chosen at
random by hashing a random message for example, cannot possibly lead to a
collision along T . In that case, we just have to generate a new one.

3.3 The Original Complexity Analysis of [3]

The authors of [3] give a generic complexity analysis of the trail backtracking at-
tack. They always assume that the conditions imposed by the round differentials
are independent from each other, which means that:

Wr(T) =

r−1∑
k=0

Wr(∆
k
i , ∆

k
x, ∆

k
o)

Following [3], we assume that we will try N pairs of (random) input state s0

before finding a collision. We count the number of right pairs entering and going
out of each round ; the round with the most incoming pairs is called the crowded
round, and the round with the less outgoing pairs is called the lonesome round.

If q pairs enter round k, then we can expect q · 2`i−Wr(∆
k
i ,∆

k
x,∆

k
o) pairs to go out.

We therefore define the excess weight in round k to be:

We(k) =

k−1∑
j=0

(
Wr(∆

j
i , ∆

j
x, ∆

j
o)− `i

)
The total expected number of pairs entering round k is N · 2−We(k), and the

expected number of pairs going out of round k is N · 2−`i−We(k+1). The analysis
now proceeds in two steps:

Evaluate N We assume that the attack succeeds as long as at least one pair
goes out of each round. This imposes N ≥ 2`i+We(k+1) for all 1 ≤ k < r .
This condition is satisfied by setting N = 2`i+maxkWe(k+1).

Evaluate the Workload According to [3], the workload can be approximated
by the number of pairs entering the crowded round : L(T) ' maxkN ·
2−We(k) = N · 2−minkWe(k). Therefore, by using the previous result, we
define the backtracking cost :

Cb(T) = `i + max
0≤j<k≤r

We(k)−We(j)

The workload of the trail backtracking attack is then: L(T) ' 2Cb(T).

The authors of [3] present arguments that RadioGatún resists the trail back-
tracking attack, using this complexity analysis. In particular, on RadioGatún〈1〉,
where the internal state is 58-bit long, they performed an extensive search and
did not find collision trail with backtracking cost smaller than 46. If there were
no better trail, this would imply that the trail backtracking attack could not
possibly be faster than exhaustive search on the one-bit version. Because the
description of RadioGatún makes use of intra-word rotation, an operation that
has no effect on the one-bit version, it is likely that the many-bit version have
better diffusion, and therefore are stronger.

We emphasize that the differential weight is not a relevant indicator, because
the backtracking attack may dramatically reduce the cost of finding a collision.
A similar phenomenon occurs in the backtracking attack against Grindalh, or in
the differential attacks based on message-modification against MD5.

3.4 Experimentation with the Backtracking Attack

We implemented the two required steps of the trail backtracking attack to find
collisions : finding differential trails, and actually finding colliding messages using
a given trail. Note that [3] only present experimental results about the former.
The C++ programs that we developed are available on the webpage of the first
author.

Finding Differential Trails. In RadioGatún〈1〉, it is possible to find collisions
by brute force, and a collision describes a collision trail. We therefore looked for
collisions extensively, and collected the corresponding trails.

The authors of [3] communicated to us their best collision trail on RadioGatún〈1〉,
that we will note T1. It is completely defined by two colliding messages sharing
a 7-block prefix followed by a 8-block colliding part. In octal notations, the two
messages are : 0364220 64172767 and 0364220 20435061. The differential weight
of this trail is 63, and its backtracking cost is 46.

We eventually found a 7-round trail (called T2) with backtracking cost 31
and differential weight 45. This surprising result was obtained while looking
for 7-round trails, by initializing the internal state with a 9-block random pre-
fix. T2 is defined by the following colliding messages, again in octal notation:
476356301 6336565 and 476356301 4250471. With the trail backtracking attack,
this gives a collision in an expected 231 effort, which is still above the birthday
bound.

Searching for a Collision. We used these two trails to find collisions on
RadioGatún〈1〉. It may be argued that we needed to find collisions (to get the
trails) before actually being able to find collisions, but there may very well be
other methods of finding trails, and we did not consider this problem. Moreover,
once a good collision trail is found, it can be used to find collision from any value
of the internal state. At the very least, if a technique were found to efficiently
find chosen-IV collisions, it could generate collision trails, and therefore be used
as a preprocessing step in our attack.

On average, the trail backtracking attack succeeds with 229 evaluations of the
round function (when using T2), which is exactly the complexity of the birthday
bound. With T1, the attack succeeds in 234.5 (in average), when the announced
complexity was 246.

In order to get some insight to why the collision search procedure succeeds
faster than expected, we observed the number of right pairs going in and out
of each round. Figure 2 shows these numbers when the first collision is found
(using T1). The results are similar if we average them on 100 collisions, or to
what is obtained with other trails. After round 2 or 3, the pairs pass the next
round with abnormally high probability. Apparently, the round differentials are
not independent. This would explain why the first rounds have a tendency to
“filter” good pairs that pass the subsequent rounds more easily. This may be very
specific to the one-bit version of RadioGatún, though. It may also be specific to
the way the collision trails were obtained (by actually computing a collision).

round in. pairs out. pairs Wr(∆k
i ,∆

k
x,∆

k
o) experimental weight

0 32.01 30.01 2 2.0

1 32.82 25.82 7 7.0

2 28.62 16.66 11 12.0

3 19.46 12.88 11 6.6

4 15.69 7.61 10 8.1

5 10.42 6.02 11 4.4

6 8.82 0.00 11 8.8

7 0.00 0.00 0 0.0

Fig. 2. (log2 of the) Number of pairs going in and out of each round in T1 ; comparison
with the weight of each round.

In itself, the trail backtracking attack does not break RadioGatún.

4 Improving the Backtracking Attack on RadioGatún〈`W 〉

In the next sections, we focus on improving the efficiency of the trail backtracking
attack whose complexity is above the birthday bound, using algebraic techniques,
as suggested by the authors of RadioGatún themselves.

The only non-linear part in RadioGatún is the “mill function”, and more
specifically its first component γ. The specific properties of γ are extensively
studied in [10, chapter 6]. For now, let us notice that γ has algebraic degree 2
over F2 (each bit of γ(a) can be expressed as a quadratic form in the input bits).
Because the rest of the round function is linear, the whole round function R can
be expressed as a tuple of 58 · `W polynomials of degree 2 in 58 · `W variables
over F2 (we denote by F2[s] the set of all polynomials over 58 · `W variables
corresponding to the bits of the internal state).

It is well-known that if a function is quadratic, then its differential is linear.
This is the key idea in this preliminary algebraic analysis of RadioGatún. Let us
consider the set of internal states ŝ after input injection satisfying the round dif-
ferential (∆i, ∆o). These state satisfy the following equation: R(̂s)⊕R(̂s⊕∆i) =
∆o. Even though R is quadratic, this equation is only linear in ŝ. Therefore,
we know that all the values of ŝ satisfying it lie in an affine space, and thus
can be characterized by linear conditions on ŝ. These conditions depend on ∆i

and ∆o, and can be computed efficiently using linear algebra. We denote by
C(∆i, ∆o) (or Ck) these conditions. The state entering the round function is
given by ŝ = s⊕Fi(x). Therefore, conditions on ŝ give two kinds of information:

1. linear conditions on the bits of s.
2. linear conditions between bits of s and bits of x.

The former can be used to detect incoming pair that will never give rise
to an outgoing pair, for any value of x. This allows to stop the exploration of
dead branches of the tree earlier. The latter directly gives us some bits of x,

k xk[0] xk[1] xk[2]

0 a[16] a[18] + 1

1 a[16] + 1

2

3 a[17] + a[16] + x[0] a[18]

4 a[15] + a[16] + 1 a[17] + 1 a[18]

5 a[17] + a[16] + x[0] + 1 a[18]

6

Fig. 3. When using T2, some bits of the input blocks xk are determined by some bits of
the incoming state. An empty cell means that the corresponding bit has to be chosen
by the attacker.

as linear combinations of bits of s, and thus allow us to filter the values of x
that do not yield a right outgoing pair. Using these conditions, we can decrease
the amount of useless trials in the backtracking attack. Figure 3 shows which
bits of the input message are determined by the internal state, for the trail T2.
The complete set of conditions is given in fig. 4.1. It must be noted that these
conditions can be computed efficiently for all values of the word size `W (the
linear algebra involved is cubic in the word size).

4.1 Experimental Results

We implemented the improved backtracking attack on RadioGatún〈1〉, using the
same two trails T1 and T2, so that the result can be compared with the regular
attack. For T2, collisions are found on an average of 227 evaluations of R, which
means a speedup of 4 compared to the regular attack. Note that this is below
the birthday bound. Annex 4.1 shows the local conditions imposed by T2. For
T1, 232, which is more than 5.5 times faster than the original attack.

5 The Backtrackingless Backtracking attack

While the technique described in the previous section reduces the amount of
backtracking by allowing an earlier filtering of pairs that will not lead to a
collision, it does not prevent all backtracking. The reason for this is that this
filtering is only local : at round k, we cannot yet filter pairs that will not pass
round k+ 1. In this section, we address this issue. We show that it is possible to
avoid all backtracking by propagating equations backwards from the last round
to the first round of the trail. We get a set of equations on the internal states
entering the first round ; if a state s0 satisfies these equations, then we can
generate a few collisions at a negligible cost. We achieve some kind of global
filtering, because we filter at the first round all the pairs that will not pass any

k C
(
∆k

i ,∆
k
x,∆

k
o

)
0 x[0] + a[16] x[2] + a[18] + 1

1

x[0] + a[16] + 1 a[0]
a[2] a[3] + 1
a[5] + a[4] a[6]
a[8] a[10] + 1
a[12] a[14] + 1

2
a[4] + 1 a[7] + a[5] + 1
a[7] + a[6] + 1 a[8] + 1
a[13] a[15]

3
x[0] + a[17] + a[16] + x[1] x[2] + a[18]
a[1] + 1 a[3]
a[13] + 1 a[15]

4

a[15] + x[0] + a[16] + 1 a[17] + x[1] + 1
x[2] + a[18] a[3] + a[0] + 1
a[3] + a[1] a[3] + a[2]
a[4] a[6]
a[7] + a[8] + 1 a[9]
a[14] + 1

5

x[0] + a[17] + a[16] + x[1] + 1 x[2] + a[18]
a[0] a[2] + 1
a[4] a[7]
a[8] + a[10] a[9] + a[10] + 1
a[11] + 1 a[15] + 1

Fig. 4. Conditions imposed at the beginning of each round by T2

of the subsequent rounds (we “push” all the conditions at the root of the tree).
We propose to name this attack the Backtrackingless Backtracking attack1.

In the previous section, we showed how to generate a set of conditions Ck
such that if a state s satisfies these conditions, then the pair

(
s, s⊕∆k

i

)
will

pass round k. In order to pass round k + 1, the states going out from round k
must also satisfy Ck+1. Our objective is to express a new set of conditions on
s such that if these conditions are satisfied, then s satisfies Ck and s′ satisfies
Ck+1. We achieve our objective of propagating all the conditions backwards to
the first round by recursively applying this process.

5.1 Description

We use standard notions and notations for commutative algebra, that can be
found for example in [8]. Formally, we say that a (polynomial) condition (or
constraint, or equation) on s is a polynomial of the ring F2[s] (i.e., a polynomial
in which the variables are bits of s). A condition P is satisfied by s if P vanishes

1 Its name is reminiscent of the inductionless induction of [7] or of the splittingless
splitting of [16].

when the variables are substituted with the actual values of bits in s. We can then
write P (s) = 0, or, using the notation from the area of logics, s |= P . The set of
states satisfying P is then the set of zeroes of P . We will also have to consider the
conjunction C of several such conditions (i.e., systems of polynomial equations).
A convenient way to represent such a system is to consider the polynomial ideal I
generated by the polynomials in C. It contains all the polynomial combinations of
its generators, that is, all the polynomial“consequences”of the original equations.
The set of states satisfying C is the set of all common zeroes of all the polynomials
in I, which is called the affine variety V(I) associated to I. We say that a set of
conditions D is a consequence of another system C if ID ⊆ IC . We note C ⇒ D
to describe this situation.

When expressing conditions about the output of the round function, we in-
troduce 58 · `W more variables s′, corresponding to the bits of the output. The
equations of R are actually equations in F2[s, s′]. We will note IR the ideal of
F2[s, s′] generated by the equations of R; its affine variety contains all the tuples
(s, s′) such that s′ = R(s). From a geometric point of view, these equations de-
scribe the graph of the function R (in the same fashion that y−x2 = 0 describes
a parabola). Later on, we will use a different representation of these equations,
that still describe the same graph.

We need a last tool before defining formally the objects we wish to compute.
We need to express conditions on the input of the (j+ 1)-th round as conditions
on the output of the j-th round. This is simply done by renaming variables. We
define the renaming function ρ : F2[s]→ F2[s′] as ρ(sj) = s′j . This renaming can

be extended to operate on ideals : ρ(I) =
{
ρ(P) | P ∈ I

}
. It is straightforward

to check that ρ(I) is still an ideal.

New Sets of Conditions. Given a r-round trail T , a sequence of r input
blocks

(
xk
)
0≤k<r and an internal state s0, we note si+1 = R

(
si ⊕ Fi

(
xi
))

. Our

objective is to build r sets of conditions Dk, 0 ≤ k < r such that if xk |= Dk,
then for all j ≥ k, xj |= Cj (if the internal state at the input of round k satisfies
the conditions Dk, then we know for sure that it will lead to a collision because
it satisfies all the subsequent sufficient conditions Cj , for k ≤ j). In particular, if
we are able to find an internal state satisfying D0, then we get a collision nearly
for free. Intuitively, our objective is to transfer simultaneously all the conditions
Ci at the beginning of each round to conditions on the internal state s0 entering
the first round. It must be noted that the authors of [3] mentioned the possibility
to propagate conditions on the input of the lonesome round to the input of the
preceding rounds. Here, we propagate conditions on the internal state.

From the definition of Dk, we can first deduce that Dk ⇒ Ck, and then that
if sk |= Dk, then sk+1 |= Dk+1. We also know that there are no conditions on
the output of round r (because a collision is already obtained), and therefore:
Dr−1 = Cr−1. For 0 ≤ j < r − 1, we can now define Dj by:

Dj =
(
Cj + IR + ρ

(
Dj+1

))⋂
F2[s]

Informally, Dj is the ideal obtained by writing together the constraints Dj+1

on s′, the equations of the round function and the constraints Cj on s. By taking
its intersection with F2[s], we eliminate all the polynomials containing a variable
from s′. This amounts to considering the consequences of these equations that
can be expressed using only the variables of s – a process known as eliminating
the variables s′.

Computing the Dj’s. The Hilbert Basis theorem tells us that, like all ideals
of a polynomial ring, Dj admits a finite number of generators; moreover, they
can be computed using a computer algebra system: compute a Gröbner basis G
of Cj + IR + ρ(Dj+1) for the lexicographic ordering (or a suitable elimination
ordering). The basis G generates Cj +IR+ρ(Dj+1), but the elimination theorem
(see [8]) additionally tells us that G ∩ F2[s] generates Dj . Now, we claim that
V
(
Dj
)

is exactly the set of all the states that will pass the end of the trail.

This is in fact a consequence of the extension theorem: if s ∈ V
(
Dj
)
, then there

exists an “extension” value s′ such that (s, s′) ∈ V
(
Cj + IR +ρ

(
Dj+1

))
. Because

we included the equations of R, this value is necessarily R(s). The conclusion
follows by induction on the number of rounds.

To complete the attack, we need to find a message yielding an internal state
s satisfying D0, starting from the IV (which is the null state); then we would
automatically get a collision without any backtracking. Note that being able to
just determine a “standalone” state in V

(
D0
)

would give a chosen-IV collision
attack.

Finding points in an affine variety is difficult in the general case, but becomes
easier when a Gröbner basis of the corresponding ideal is known (and it is very
easy when a Gröbner basis is known for the lexicographic ordering). Here, as it
result from the process of elimination, D0 form a Gröbner basis for a certain
ordering, which depends on the ordering used for the elimination process. It
could be chosen so that D0 form a lexicographic Gröbner basis (using a block
order where the non-eliminated variables are ordered lexicographically), but this
may make the elimination process slower. In any case, order change algorithms
could be used, such as the Gröbner Walk [6] or FGLM [15].

Reaching D0. To find real collisions, we need to be able to reach V
(
D0
)

starting from the null state. The problem of finding a collision thus reduces
to the problem of reaching a state satisfying a set of polynomial conditions.
This formulation of the problem is again reminiscent of message modification
techniques. This suggest that such powerful techniques could be used here. We
did not investigate this problem in detail, and we only tried to hash random
messages until all the conditions are satisfied. In this case, the complexity of
finding a collision is related to the cardinality of V(Dj).

The representation of the condition set D0 on the initial conditions is not
unique. In our case, it forms a Gröbner basis, which is certainly interesting. We
have some freedom in the choice of the ordering. The Graded Reverse Lexico-
graphic order produces the system of lowest possible degree, but usually returns

a system with more equations than when using the lexicographic ordering (which
yields equations of higher degree).

5.2 Implementation and Experimental Results

We implemented the backtrackingless backtracking attack, using an off-the-shelf
computer algebra system to perform the algebraic computations, and then we
adapted our collision-finding program to use these conditions.

Propagating Conditions. Back to our two trails T1 and T2, the process of
computing the conditions D0 involves nontrivial algebraic computation. We used
the implementation of the F4 [14] algorithm in the MAGMA computer algebra
system to obtain the Gröbner bases. We expected these computations to be very
hard (the systems have 100+ variables, and contains the equations of R). It
is usually not possible to compute a Gröbner basis of the equations describing
directly a cryptographic primitive – MAGMA ate 8Gb of memory and crashed
when we tried to compute a Gröbner basis of IR. However, the computations
of our sets of conditions were not only possible, but also unexpectedly fast (less
than a second). Computing D0 for a given trail is usually a matter of less than
five seconds on a desktop computer. Even more surprisingly, the conditions Dj
are almost always linear, for all trails, except when j = 0 on some trails.

– For T2 in particular, the conditions D5, D4, D3 and D1 are linear. D2 contains
a few equations of degree 2, and D0 contains one equation of degree 3, along
with 97 quadratic and 15 linear equations.

– For T1, only D0 is non-linear ; it contains 26 quadratic and 26 linear equa-
tions.

This means that the size of conditions propagated through the round function
does not blow up exponentially with the number of round passed. This was
unexpected, because the size of the equations describingR(k) grows exponentially
with k. In fact, the local conditions computed in section 4 play a crucial role
here: the Gröbner basis computation are much faster and more tractable if there
are a few linear conditions on the internal state entering the round. In particular,
C0 is usually almost empty for many trails, and the conditions D0 are usually
bigger and of higher degree than the others.

Actually Finding Collisions. Our collision-finding program just hashes ran-
dom messages and checks if the resulting internal state satisfies D0. If it is the
case, the previous version of the backtracking attack is run, and succeeds with-
out backtracking. The performance of our straightforward implementation is the
following: for T2, a collision is found with about 224.5 evaluations of the round
function (229.5 for T1, which means a speedup of 32 compared to the original
attack).

In addition, we estimated the size of the set of states leading to a collision
by Monte-Carlo sampling : the probability that a random message yields a state

from which a collision is possible for T1 (resp. T2) is 2−28.42 (resp. 2−23.4). This
means that for T1 (resp. T2) we have |T1| ' 229.6 (resp. 234.6). It is worth
noting that the trail that has the best backtracking cost still yields the biggest
affine variety. We also note that the running time of our simple implementation
is relatively well-correlated to the cardinalities of the affine varieties.

5.3 About the Structure of the Equations

In this short section, we give a few elements in order to explain why the algebraic
attack is successful. We discuss the case of the one-bit version, but the discussion
also apply to the bigger versions, as we may notice. There are 19 mill equations
that we denote by f1, . . . , f19.

Peeling Off the Diffusion Layer. Compared to algebraic attacks on block
ciphers, the situation is quite easier here. First of all, we are not facing a mono-
lithic cipher where all the internal state is unknown but we can attack each round
independently of the others (the conditions Sj bridge the gap between the iso-
lated rounds). The equations we are manipulating therefore only represent a
single round, which is much weaker than the whole construction.

Second, the hardness of solving the equations associated with a block cipher
come from the alternation of a simple non-linear part (the S-Boxes, or the γ
function here) with a linear diffusion layer. Since we are considering a single
round here, it is possible to “peel off” the diffusion layer, and to expose the non-
linear core directly, by considering a linear combination of the original equations: g1

...
g19

 = L−14 ×

 f1
...
f19

 = γ
(
a⊕ L5(x)

)
⊕ linear terms

Thus, it is relatively equivalent to perform our analysis on the equations of γ
and on the equations of the mill function. Recall that γ(a)[i] is given by:

γ(a)[i] = a[i+ 1]a[i+ 2]⊕ a[i+ 2]⊕ a[i]⊕ 1

Sparsity of the Equations. Computing a Gröbner base of the equations of
γ is not easy (MAGMA takes about 10 minutes on a fast machine and requires
2.8 Gbytes of memory to do so, for the degree reverse lexicographic order).
However, these equations have a specific structure that can be exploited. They
are extremely sparse, each containing only one quadratic term. Moreover, each
variable appear in exactly two quadratic terms. This means that if the value
of a variable is fixed, two equations become linear. To illustrate how bad a
property this is, let us consider a random quadratic form in n variables. It is
shown in [17] that on fields of characteristic 2, any quadratic form becomes a

special standard form f =
∑n/2
i=0 x2ix2i+1 under the right change of variables

(some details omitted for the sake of simplicity). This means that we may have
to fix about n/2 variables in the new basis before the form becomes linear.

Let us go back to our main computational problem, namely the computation
of a Gröbner basis of the ideal generated by Cj + IR + ρ

(
Dj+1

)
, for a suitable

elimination ordering. Along with the equations of R are the linear conditions Cj
imposed on the input bits of each round. These conditions, shown in fig. 4.1,
often fix the value of one bit. Therefore, in conjunction with the removal of the
diffusion layer, they can be used to dramatically simplify the equations of IR.
This explain not only why the algebraic computations are fast, but also why the
propagated conditions are mostly linear. In fact, computer algebra systems are
able to perform these simplifications automaticaly.

The REDUCTION Algorithm. Let B be a set of polynomials. A polynomial
P is said to be reduced for B if no monomial of P lies in the ideal generated by the
head terms of B − P . Intuitively, this means that P cannot be “simplified” by a
polynomial combination of elements in B. A Basis B is said to be reduced if each
P ∈ B is reduced for B − P (the polynomials of B cannot simplify each other).
The REDUCTION algorithm, which gives a reduced basis from an arbitrary
basis, is described in [8, chapter 2, paragraph 7], and in [1, figure 5.2]. Note
than when applied to linear polynomials only, it is actually (a version of) the
Gaussian reduction algorithm.

REDUCTION is often invoked automatically in computer algebra systems
before and after the computation of a Gröbner basis. When the graded-reverse
lexicographic ordering is used, it removes some of the quadratic terms in the
equations of γ by substituting the linear equations of Cj in them. Additional
tuning of variable order does not seem to be necessary to obtain satisfactory
results. However, ordering the variables in the following way: a′ < a < x peels
off the diffusion layer very nicely, by keeping the number of quadratic term close
to the minimum, and making the 19 quadratic terms of γ the head terms of the
19 equations.

6 Extension to `w > 1

The main interest in studying RadioGatún〈1〉, according to [3], is that a collision
trail for the one-bit version could be transformed into a collision trail for any
n-bit version, with an increased differential weight. In this section, we briefly
survey how the result presented in this paper apply to the case where `W > 1.

The backtracking attack with local filtering presented in section 4 can be
mounted for any value of `W without any difficulty, as its complexity is polyno-
mial in `w.

The backtrackingless backtracking attack may be more difficult to implement,
as we have no upper-bound on the complexity of the Gröbner basis computations
involved in the attack. However, all the arguments given in section 5.3 still apply
to the multi-bit case ; the diffusion layer can be gotten rid of as efficiently as in
the one-bit case. Then, the multi-bit version of γ is actually a collection of `w

copies of the one-bit version of γ operating independently (the diffusion layer is
supposed to connect them).

Unfortunately, we did not implement the attack in the multi-bit case, because
we were not able to find any possible differential trail for any value of `w > 1.
The heuristic argument of [3] regarding the extension of trails from 1-bit to n-bit
assumes that the conditions imposed by the round differentials are independent.
As we have seen earlier, this is not the case. All the possible trails we knew for
the 1-bit version turned out to be impossible to extend to n-bit versions (the
round differentials seem to impose contradictory conditions).

In any case, we believe that our technique may come in handy when collision
trail will be found for RadioGatún〈`w〉 with `w > 1 though.

7 Conclusion

We presented an improvement to the trail backtracking attack introduced by
the authors of RadioGatún, and which is reminiscent of the well-known mes-
sage modification applied against the MD and SHA family. We are able to give
an algebraic characterization of the internal states that can lead to a collision
along a given trail. Finding a message mapping the IV to a state satisfying all
these conditions remains an open problem, which is also reminiscent of message
modification.

These preliminary remarks on RadioGatún invite some comments : the fact
that the round function is only quadratic seems to be exploitable in unpredictable
ways. It would be safe to consider functions of higher degree, but the hashing
speed would probably be affected. Alternatively, increasing the diffusion effect
of the belt in order to exploit the non-linearity of the mill function further seems
to be a potential solution to make the backtracking cost of collision trails higher.

Acknowledgement We thank Guido Bertoni, Joan Daemen, Michaël Peeters
and Gilles Van Assche for many useful discussion and comments. The authors
are indebted to Christophe de Cannière who helped us with the trail-finding
program.

References

1. Becker, T., Weispfenning, V., Kredel, H.: Gröbner bases: a computational approach
to commutative algebra. Springer-Verlag, London, UK (1993)

2. Bertoni, G., Daemen, J., Peeters, M., Assche, G.V.: On the indifferentiability of the
sponge construction. In Smart, N.P., ed.: EUROCRYPT. Volume 4965 of Lecture
Notes in Computer Science., Springer (2008) 181–197

3. Bertoni, G., Daemen, J., Peeters, M., Assche, G.V.: RadioGatún, a Belt-and-Mill
Hash Function. Presented at Second Cryptographic Hash Function Workshop,
August 24-25, 2006, Santa Barbara, California (August 2006) http://radiogatun.
noekeon.org/.

4. Bertoni, G., Daemen, J., Peeters, M., Assche, G.V.: Sponge functions. Presented
at ECrypt Hash Function Workshop, May 24, 2007, Barcelona, Spain (May 2007)

5. Biryukov, A., ed.: Fast Software Encryption, 14th International Workshop, FSE
2007, Luxembourg, Luxembourg, March 26-28, 2007, Revised Selected Papers.
In Biryukov, A., ed.: FSE. Volume 4593 of Lecture Notes in Computer Science.,
Springer (2007)

6. Collart, S., Kalkbrener, M., Mall, D.: Converting bases with the gröbner walk. J.
Symb. Comput. 24(3/4) (1997) 465–469

7. Comon, H.: Inductionless induction. In Robinson, J.A., Voronkov, A., eds.: Hand-
book of Automated Reasoning. Elsevier and MIT Press (2001) 913–962

8. Cox, D., Little, J., O’Shea, D.: Ideals, Varieties, and Algorithms: An Introduction
to Computational Algebraic Geometry and Commutative Algebra (Undergraduate
Texts in Mathematics). Springer (February 2007)

9. Cramer, R., ed.: Advances in Cryptology - EUROCRYPT 2005, 24th Annual Inter-
national Conference on the Theory and Applications of Cryptographic Techniques,
Aarhus, Denmark, May 22-26, 2005, Proceedings. In Cramer, R., ed.: EURO-
CRYPT’05. Volume 3494 of Lecture Notes in Computer Science., Springer (2005)

10. Daemen, J.: Cipher and hash function design. Strategies based on linear and
differential cryptanalysis. PhD thesis, Katholieke Universiteit Leuven (March 1995)

11. Daemen, J., Assche, G.V.: Producing collisions for panama, instantaneously. [5]
1–18

12. Daemen, J., Clapp, C.S.K.: Fast hashing and stream encryption with panama.
In Vaudenay, S., ed.: FSE. Volume 1372 of Lecture Notes in Computer Science.,
Springer (1998) 60–74

13. Dobbertin, H.: Cryptanalysis of md4. J. Cryptology 11(4) (1998) 253–271
14. Faugère, J.C.: A new efficient algorithm for computing grobner bases (f4). Journal

of Pure and Applied Algebra 139(1-3) (1999) 61–68
15. Faugère, J.C., Gianni, P.M., Lazard, D., Mora, T.: Efficient computation of zero-

dimensional gröbner bases by change of ordering. J. Symb. Comput. 16(4) (1993)
329–344

16. Goubault-Larrecq, J., Roger, M., Verma, K.N.: Abstraction and resolution mod-
ulo ac: How to verify diffie-hellman-like protocols automatically. J. Log. Algebr.
Program. 64(2) (2005) 219–251

17. Lidl, R., Niederreiter, H.: Finite Fields (Encyclopedia of Mathematics and its
Applications). Cambridge University Press (October 1996)

18. Peyrin, T.: Cryptanalysis of grindahl. In: ASIACRYPT. (2007) 551–567
19. Rijmen, V., Rompay, B.V., Preneel, B., Vandewalle, J.: Producing collisions for

panama. In Matsui, M., ed.: FSE. Volume 2355 of Lecture Notes in Computer
Science., Springer (2001) 37–51

20. Shoup, V., ed.: Advances in Cryptology - CRYPTO 2005: 25th Annual Inter-
national Cryptology Conference, Santa Barbara, California, USA, August 14-18,
2005, Proceedings. In Shoup, V., ed.: CRYPTO. Volume 3621 of Lecture Notes in
Computer Science., Springer (2005)

21. Sugita, M., Kawazoe, M., Perret, L., Imai, H.: Algebraic cryptanalysis of 58-round
sha-1. [5] 349–365

22. Wang, X., Lai, X., Feng, D., Chen, H., Yu, X.: Cryptanalysis of the Hash Functions
MD4 and RIPEMD. [9] 1–18

23. Wang, X., Yin, Y.L., Yu, H.: Finding Collisions in the Full SHA-1. [20] 17–36
24. Wang, X., Yu, H.: How to Break MD5 and Other Hash Functions. [9] 19–35
25. Wang, X., Yu, H., Yin, Y.L.: Efficient Collision Search Attacks on SHA-0. [20]

1–16

