Termination Analysis

MPRI 2-6: Abstract Interpretation, Application to Verification and Static Analysis

Caterina Urban

So far, we have focused on using static analysis to avoid software failures

that is, for proving Safety Properties

Safety vs Liveness Properties

Liveness Properties

- Guarantee Properties
"something good eventually happens at least once"
- Example: Program Termination
- Recurrence Properties
"something good eventually happens infinitely often"
- Example: Starvation Freedom

Program Termination

The Zune Bug

unresponsive systems

31 December 2008

Ө ○ O Tris $30 C B$ zunes all over the w x
 $\leftarrow \rightarrow C$
 \square techcrunch.com/2008/12/31/all-zu

News TCTV Events
disRupt Register Now to Save $£ 300$ on Disrupt Europe: London

Gadgets

30GB Zunes all over th

Posted Dec 31, 2008 by Matt Burns (@mjburnsy)

- f share 0 in share 0 Tweet 0

It seems that a random bug is affecting a bunch, a bunch of Zune 30 s just stopped working. No of might have a gadget Y 2 K going on here. Fan boar same mantra saying that at 2:00 AM this morning fully reboot. We're sure Microsoft will get floodec lines open up for the last time in 2008. More as v

Update 2: The solution is ... kind of weak: let you you wake up tomorrow and charge it.
$\theta 00$
$\leftarrow \rightarrow C$Zune bug explained in det x
techcrunch.com/2008/12/31/zune-bug-explained-in-detail/
\&

Zune bug explained in detail

Posted Dec 31, 2008 by Devin Coldewey
fi Share 10 In Share - Tweet 2 $*$

Earlier today, the sound of thousands of Zune owners crying out in terror made ripples across the blogosphere. The response from Microsoft is to wait until tomorrow and all will be well. You're probably wondering, what kind of bug fixes itself?

Well, I've got the code here and it's very simple, really; if you've taken an introductory programming class, you'll see the error right away.

```
year = ORIGINYEAR; /* = 1980 */
while (days > 365)
{
    if (IsLeapYear(year))
    {
        if (days > 366)
        f
            days -= 366;
            year += 1;
        }
    }
    else
    {
        days -= 365;
        year += 1;
    }
```

You can see the details here, but the important bit is that today, the day count is 366 . As you

Apache HTTP Server
 Versions <2.3.3

Azure Storage Service 19 November 2014

Blog > Announcements

Update on Azure Storage Service Interruption

Posted on November 19, 2014

Jason Zander
Corporate Vice President, Microsoft Azure Team
Update: 11/22/2014, 12:41 PM PST Since Wednesday, we have been working to help a subset of customers take final steps to fully recover from Tuesday's storage service interruption. The incident has now been resolved and we are seeing normal activity in the system. You can find updates on the status dashboard: https://azure.microsoft.com/en-us/status. If you feel you are still having issues due to the incident, please contact azcommsm@microsoft.com, and we will be happy to assist, whether you have a support contract or not. Thank you all again for your feedback regarding communications around this incident. We are actively working to incorporate that feedback into our planning going forward. Wednesday, November, 19, 2014 As part of a performance update to Azure Storage, an issue was discovered that resulted in reduced capacity across services utilizing Azure Storage, including Virtual Machines, Visual Studio Online, Websites, Search and other Microsoft services. Prior to applying the performance update, it had been tested over several weeks in a subset of our customer-facing storage service for Azure Tables. We typically call this "flighting," as we work to identify issues before we broadly deploy any updates. The flighting test demonstrated a notable performance improvement and we proceeded to deploy the update across the storage service. During the rollout we discovered an issue that resulted in storage blob front ends going into an infinite loop, which had gone undetected during flighting. The net result was an inability for the front ends to take on further traffic, which

Potential and Definite Termination

Definition

A program with trace semantics $\mathscr{M} \in \mathscr{P}\left(\Sigma^{\infty}\right)$ may terminate if and only if $\mathscr{M} \cap \Sigma^{*} \neq \varnothing$

Definition

A program with trace semantics $\mathscr{M} \in \mathscr{P}\left(\Sigma^{\infty}\right)$ must terminate if and only if $\mathscr{M} \subseteq \Sigma^{*}$

Finite traces

Finite trace: finite sequence of elements from Σ
■ ϵ : empty trace (unique)

- σ : trace of length 1 (assimilated to a state)
- $\sigma_{0}, \ldots, \sigma_{n-1}$: trace of length n
- Σ^{n} : the set of traces of length n
$■ \Sigma \leq n \stackrel{\text { def }}{=} \cup_{i<n} \Sigma^{i}$: the set of traces of length at most n $\Sigma^{*} \stackrel{\text { def }}{=} \cup_{i \in \mathbb{N}} \Sigma^{i}$: the set of finite traces

Note: we assimilate

- a set of states $S \subseteq \Sigma$ with a set of traces of length 1
- a relation $R \subseteq \Sigma \times \Sigma$ with a set of traces of length 2
so, $\mathcal{I}, \mathcal{F}, \tau \in \mathcal{P}\left(\Sigma^{*}\right)$

In absence of non-determinism, potential and definite termination coincide

Definite Termination Ranking Functions

Variance proof method:
Find a decreasing quantity until something

$$
\begin{aligned}
& \text { Example: termination proof } \\
& \text { - find } f: \Sigma \rightarrow \mathcal{S} \text { where }(\mathcal{S}, \sqsubseteq) \text { is well-ordered (cf. previous course) } \\
& \quad f_{\text {is called a "ranking function" }} \\
& -\sigma \in \mathcal{B} \Longrightarrow f=\min \mathcal{S} \\
& -\sigma \rightarrow \sigma^{\prime} \Longrightarrow f\left(\sigma^{\prime}\right) \sqsubset f(\sigma) \\
& \text { neralizes the idea that } f \text { "counts" the number of steps remaining beforening good happens }
\end{aligned}
$$

$$
\begin{aligned}
\sigma \rightarrow \sigma^{\prime} & \Longrightarrow f\left(\sigma^{\prime}\right) \sqsubset f(\sigma)
\end{aligned}
$$

$$
\text { generalizes the idea that } f \text { " } \Rightarrow f\left(\sigma^{\prime}\right) \sqsubset f(\sigma)
$$

Definition

Given a transition system $\langle\Sigma, \tau\rangle$, a ranking function is a partial function $f: \Sigma \rightharpoonup \mathscr{V}$ from the set of program states Σ into a well-ordered set $\langle\mathscr{W}, \leq\rangle$ whose value strictly decreases through transitions between states, that is, $\forall \sigma, \sigma^{\prime} \in \operatorname{dom}(f):\left(\sigma, \sigma^{\prime}\right) \in \tau \Rightarrow f\left(\sigma^{\prime}\right)<f(\sigma)$

The best known well-ordered sets are naturals $\langle\mathbb{N}, \leq\rangle$ and ordinals $\langle\mathbb{O}, \leq\rangle$

Ranking Functions Example (continue)

```
1'x\leftarrow[-\infty,+\infty]
    while}\mp@subsup{}{}{2}(1-x<0) d
        3}\textrm{x}\leftarrow\textrm{x}-
od4
\Sigma def = {1,2,3,4} }\times\mathscr{E
\tau}\stackrel{\mathrm{ def }}{=}{(\mathbf{1},\rho)->(\mathbf{2},\rho[X\mapsto\nu])|\rho\in\mathscr{E},v\in\mathbb{Z}
\cup{(2,\rho)->(3,\rho)| |\rho\in\mathscr{E},\existsv\inE\llbracket1-x\rrbracket\rho:v<0}
\cup{(3,\rho)->(2,\rho[X\mapstov])|\rho\in\mathscr{E},v\inE\llbracketx-1\rrbracket\rho}
\cup{(\mathbf{2},\rho)->(4,\rho)||\rho\in\mathscr{E},\existsv\inE\llbracket1-x\rrbracket\rho:v\not<0}
```


Ranking Functions Example (continue)

```
\({ }^{1} \mathrm{x} \leftarrow[-\infty,+\infty]\)
    while \({ }^{2}(1-x<0)\) do
        \({ }^{3} x \leftarrow x-1\)
\(\mathbf{o d}^{4}\)
```

Most obvious ranking function:
a mapping $f: \Sigma \rightharpoonup \mathbb{O}$
from each program state
to
(a well-chosen upper bound on)
the number of steps until termination

Ranking Functions Example (continue)

${ }^{1} \mathrm{x} \leftarrow[-\infty,+\infty]$
while ${ }^{2}(1-x<0)$ do

$$
{ }^{3} x \leftarrow x-1
$$

$\mathbf{o d}^{4}$

We define the ranking function $f: \Sigma \rightharpoonup \mathbb{O}$ by partitioning with respect to the program control points, i.e., $f: \mathscr{L} \rightarrow(\mathscr{E} \rightharpoonup(\mathbb{D})$

$$
\begin{aligned}
& f(\mathbf{4}) \stackrel{\text { def }}{=} \lambda \rho \cdot 0 \\
& f(\mathbf{2}) \stackrel{\text { def }}{=} \lambda \rho \cdot \begin{cases}1 & 1-\rho(x) \nless 0 \\
2 \rho(x)-1 & 1-\rho(x)<0\end{cases} \\
& f(\mathbf{3}) \stackrel{\text { def }}{=} \lambda \rho \cdot \begin{cases}2 & 2-\rho(x) \nless 0 \\
2 \rho(x)-2 & 2-\rho(x)<0\end{cases} \\
& f(\mathbf{1}) \stackrel{\text { def }}{=} \lambda \rho \cdot \omega
\end{aligned}
$$

Potential Termination Potential Ranking Functions

For proving potential termination, we use a weaker notion of ranking function, which decreases along at least one transition during program execution

Definition

Given a transition system $\langle\Sigma, \tau\rangle$, a potential ranking function is a partial function $f: \Sigma \rightharpoonup \mathscr{V}$ from the set of states Σ into a well-ordered set $\langle\mathscr{W}, \leq\rangle$ whose value strictly decreases through at least one transitions from each state, that is, $\forall \sigma \in \operatorname{dom}(f):(\exists \bar{\sigma} \in \operatorname{dom}(f):(\sigma, \bar{\sigma}) \in \tau) \Rightarrow$ $\exists \sigma^{\prime} \in \operatorname{dom}(f):\left(\sigma, \sigma^{\prime}\right) \in \tau \wedge f\left(\sigma^{\prime}\right)<f(\sigma)$

Abstract Interpretation Recipe

practical tools

targeting specific programs
algorithmic approaches
to decide program properties
mathematical models
of the program behavior

Abstract Interpretation Recipe

practical tools
 targeting specific programs

algorithmic approaches

 to decide proaram properticmathematical models of the program behavior

Termination Semantics

Hierarchy of Semantics

termination semantics

termination trace semantics
maximal trace semantics

Hierarchy of Semantics

for more sem
more semantics in this diagra

termination semantics
termination trace semantics
maximal trace semantics

Maximal Trace Semantics

Example

Maximal traces: $\mathcal{M}_{\infty} \in \mathcal{P}\left(\Sigma^{\infty}\right)$
sequences of states linked by
start in any state $(\mathcal{I}=\Sigma$, the by transition relation τ
either finite and stop in a blockinguirement for the fixpoint τ

can be anchored at \mathcal{I} and \mathcal{F} as: $\left.\mathcal{M}_{\infty} \cap\left(\mathcal{I} \cdot \Sigma^{\infty}\right) \cap\left(\left(\Sigma^{*} \cdot \mathcal{F}\right) \cup \Sigma^{\omega}\right)\right)$

Itrace semantics

Least fixpoint formulation of maximal traces

Idea: To get a least fixpoint formulation for whole \mathcal{M}_{∞},
we merge finite and infinite maximal trace least fixpoint forms

Fixpoint fusion

$\mathcal{M}_{\infty} \cap \Sigma^{*}$ is best defined on ($\left.\mathcal{P}\left(\Sigma^{*}\right), \subseteq, \cup, \cap, \emptyset, \Sigma^{*}\right)$.
$\mathcal{M}_{\infty} \cap \Sigma^{\omega}$ is best defined on $\left(\mathcal{P}\left(\Sigma^{\omega}\right), \supseteq, \cap, \cup, \Sigma^{\omega}, \emptyset\right)$, the dual lattice.
(we transform the greatest fixpoint into a least fixpoint!)
We mix them into a new complete lattice $\left(\mathcal{P}\left(\Sigma^{\infty}\right)\right.$, $\left.\sqsubseteq, ~ \sqcup, ~ \sqcap, ~ \perp, ~ \top\right): ~$
$-A \sqsubseteq B \stackrel{\text { def }}{\Longleftrightarrow}\left(A \cap \Sigma^{*}\right) \subseteq\left(B \cap \Sigma^{*}\right) \wedge\left(A \cap \Sigma^{\omega}\right) \supseteq\left(B \cap \Sigma^{\omega}\right)$
$-A \sqcup B \stackrel{\text { def }}{=}\left(\left(A \cap \Sigma^{*}\right) \cup\left(B \cap \Sigma^{*}\right)\right) \cup\left(\left(A \cap \Sigma^{\omega}\right) \cap\left(B \cap \Sigma^{\omega}\right)\right)$

- $A \sqcap B \stackrel{\text { def }}{=}\left(\left(A \cap \Sigma^{*}\right) \cap\left(B \cap \Sigma^{*}\right)\right) \cup\left(\left(A \cap \Sigma^{\omega}\right) \cup\left(B \cap \Sigma^{\omega}\right)\right)$
- $\perp \stackrel{\text { def }}{=} \Sigma^{\omega}$
- $T \xlongequal{\text { def }} \Sigma^{*}$

In this lattice, $\mathcal{M}_{\infty}=\operatorname{Ifp} F_{s}$ where $F_{s}(T) \stackrel{\text { def }}{=} \mathcal{B} \cup \tau \sim T$
(proof on next slides)

Hierarchy of Semantics

termination semantics

termination trace semantics
maximal trace semantics

Potential Termination Trace Semantics
 $$
\begin{aligned} & \quad \forall a \in A, c \in C, \alpha(c) \sqsubseteq a \Leftrightarrow c \leq \gamma(a) \\ & \text { Which is noted }(C, \leq) \frac{\gamma}{a}(A, 5) . \end{aligned}
$$

Potential Termination Abstraction

Finite trace abstraction

$$
\begin{aligned}
& \alpha_{*}(T) \stackrel{\text { def }}{=} T \cap \Sigma^{*} \\
& \gamma_{*}(T) \stackrel{\text { def }}{=} T
\end{aligned}
$$

Example:

Finite partial traces \mathcal{T} are an abstraction of all partial traces \mathcal{T}_{∞} (forget about infinite executions)

We have a Galois embedding:

$$
\left(\mathcal{P}\left(\Sigma^{\infty}\right), \sqsubseteq\right) \underset{\alpha_{*}}{\stackrel{\gamma_{*}}{\leftrightarrows}}\left(\mathcal{P}\left(\Sigma^{*}\right), \subseteq\right)
$$

- \sqsubseteq is the fused ordering on $\Sigma^{*} \cup \Sigma^{\omega}$;

$$
\begin{aligned}
& A \sqsubseteq B \stackrel{\text { def }}{\Longleftrightarrow}\left(A \cap \Sigma^{*}\right) \subseteq\left(B \cap \Sigma^{*}\right) \wedge\left(A \cap \Sigma^{\omega}\right) \supseteq\left(B \cap \Sigma^{\omega}\right) \\
- & \alpha_{*}(T) \stackrel{\text { def }}{=} T \cap \Sigma^{*} \\
& \text { (remove infinite traces) } \\
- & \gamma_{*}(T) \stackrel{\text { def }}{=} T \\
& \text { (embedding) } \\
- & \mathcal{T}=\alpha_{*}\left(\mathcal{T}_{\infty}\right)
\end{aligned}
$$

Potential Termination

 Trace SemanticsKleenian Fixpoint Transfer

- $\left\langle\mathscr{P}\left(\Sigma^{\infty}\right), \sqsubseteq\right\rangle$

- $\left\langle\mathscr{P}\left(\Sigma^{*}\right), \subseteq\right\rangle$
- $\alpha_{*}: \mathscr{P}\left(\Sigma^{\infty}\right) \rightarrow \mathscr{P}\left(\Sigma^{*}\right)$

$$
\begin{aligned}
& \alpha_{*}(T) \stackrel{\text { def }}{=} T \cap \Sigma^{*} \\
& \mathscr{T}_{m} \stackrel{\text { def }}{=} \alpha_{*}\left(\mathscr{M}_{\infty}\right)=\operatorname{lfp} \varsigma_{*} \\
& F_{*}(T) \stackrel{\text { def }}{=} \mathscr{B} \cup \tau \neg T
\end{aligned}
$$

Theorem

Let $\langle C, \leq\rangle$ and $\langle A, \sqsubseteq\rangle$ be complete partial orders, let $f: C \rightarrow C$ and $f^{\#}: A \rightarrow A$ be monotonic functions, and let $\alpha: C \rightarrow A$ be a continous abstraction function such that $\alpha(a)=a^{\#}$, for $a \in C$ and $a^{\#} \in A$, and that satisfies the commutation condition $\alpha \circ f=f^{\#} \circ \alpha$. Then, we have the fixpoint abstraction $\alpha(\operatorname{lfp} \underset{a}{\leq} f)=\operatorname{lfp} \bar{a}_{a^{\#}}^{\sqsubseteq} f^{\#}$.

Potential Termination Trace Semantics

Example

while ${ }^{1}([-\infty,+\infty] \neq 0)$ do 2skip
od 3
$\begin{aligned} M_{\infty} \stackrel{\text { def }}{=} & \left\{(\mathbf{1}, \rho)(\mathbf{2}, \rho)^{*}(\mathbf{3}, \rho) \mid \rho \in \mathscr{E}\right\} \\ & \left.\cup\{\mathbf{1}, \rho)(\mathbf{2}, \rho)^{\omega} \mid \rho \in \mathscr{E}\right\}\end{aligned}$
$\mathscr{T}_{m} \stackrel{\text { def }}{=}\left\{(\mathbf{1}, \rho)(\mathbf{2}, \rho)^{*}(\mathbf{3}, \rho) \mid \rho \in \mathscr{E}\right\}$

Hierarchy of Semantics

termination semantics

termination trace semantics
maximal trace semantics

Definite Termination Trace Semantics

Definite Termination Abstraction

Example:
$\alpha_{*}\left(\left\{a b, a b a, b b, b a^{\omega}\right\}\right)=\{a b, a b a\}$ since $\operatorname{pf}(b b) \cap \operatorname{pf}\left(b a^{\omega}\right)=\{b\} \neq \varnothing$

Definite Termination Trace Semantics

Tarskian Fixpoint Transfer

- $\left\langle\mathscr{P}\left(\Sigma^{\infty}\right), \sqsubseteq, \sqcup, \sqcap, \Sigma^{\omega}, \Sigma^{*}\right\rangle$
- $\mathcal{M}_{\infty} \stackrel{\text { def }}{=}$ lfp $\sqsubseteq F_{s}$.
- $\left\langle\mathscr{P}\left(\Sigma^{*}\right), \subseteq, \cup, \cap, \varnothing, \Sigma^{*}\right\rangle$
- $\bar{\alpha}_{*}: \mathscr{P}\left(\Sigma^{\infty}\right) \rightarrow \mathscr{P}\left(\Sigma^{*}\right)$
$\mathscr{T}_{M} \stackrel{\text { def }}{=} \bar{\alpha}_{*}\left(\mathscr{M}_{\infty}\right)=\operatorname{lfp} \subseteq \bar{F}_{*}$
$\left.\bar{F}_{*}(T) \stackrel{\text { def }}{=} \mathscr{B} \cup\left(\left(\tau^{\smile} T\right) \cap\left(\Sigma^{+} \backslash\left(\tau^{`}\left(\Sigma^{+} \backslash T\right)\right)\right)\right)\right)$

Theorem

Let $\langle C, \leq, \vee, \wedge, \perp, \top\rangle$ and $\left\langle A, \sqsubseteq, \sqcup, \sqcap, \perp^{\#}, T^{\#}\right\rangle$ be complete lattices, let $f: C \rightarrow C$ and $f^{\#}: A \rightarrow A$ be monotonic functions, and let $\alpha: C \rightarrow A$ be an abstraction function that is a complete \wedge-morphism $(\forall S \subseteq C: f(\wedge S)=\sqcap\{f(s) \mid s \in S\})$ and that satisfies $f^{\#} \circ \alpha \sqsubseteq \alpha \circ f$ and the post-fixpoint correspondence $\forall a^{\#} \in A: f^{\#}\left(a^{\#}\right) \sqsubseteq a^{\#} \Rightarrow$ $\exists a \in C: f(a) \leq d \wedge \alpha(a)=a^{\#}$ (i.e., each abstract post-fixpoint of $f^{\#}$ is the abstraction by α of some concrete post-fixpoint of f). Then, we have the fixpoint abstraction $\alpha(\mathrm{Ifp} \leq f)=\operatorname{Ifp} \sqsubseteq f^{\#}$.

Definite Termination Trace Semantics

Example

while ${ }^{1}([-\infty,+\infty] \neq 0)$ do ${ }^{2}$ skip
od 3
$\begin{aligned} & \mathcal{M}_{\infty} \stackrel{\text { def }}{=}\left\{(\mathbf{1}, \rho)(\mathbf{2}, \rho)^{*}(\mathbf{3}, \rho) \mid \rho \in \mathscr{E}\right\} \\ & \cup\left\{(\mathbf{1}, \rho)(\mathbf{2}, \rho)^{\omega} \mid \rho \in \mathscr{E}\right\}\end{aligned}$
$\mathscr{T}_{M} \stackrel{\text { def }}{=} \varnothing$

Hierarchy of Semantics

 termination semantics

 termination semantics
 termination trace semantics
 maximal trace semantics

Potential Termination Semantics Potential Ranking Abstraction

$$
\alpha_{m}(T) \stackrel{\text { def }}{=} \alpha_{v}(\vec{\alpha}(T))
$$

$\alpha_{v}(\varnothing) \stackrel{\text { def }}{=} \dot{\varnothing}$
$\alpha_{v}(r) \sigma \stackrel{\text { def }}{=} \begin{cases}0 & \forall \sigma^{\prime} \in \Sigma:\left(\sigma, \sigma^{\prime}\right) \notin r \\ \inf \left\{\alpha_{v}(r) \sigma^{\prime}+1 \mid \sigma^{\prime} \in \operatorname{dom}\left(\alpha_{v}(r)\right) \wedge\left(\sigma, \sigma^{\prime}\right) \in r\right\} & \text { otherwise }\end{cases}$
$\vec{\alpha}(T) \stackrel{\text { def }}{=}\left\{\left(\sigma, \sigma^{\prime}\right) \in \Sigma \times \Sigma \mid \exists t \in \Sigma^{*}, t^{\prime} \in \Sigma^{\infty}: t \sigma \sigma^{\prime} t^{\prime} \in T\right\}$

Potential Termination Semantics

$$
\begin{aligned}
& \mathscr{R}_{m} \stackrel{\text { def }}{=} \alpha_{m}\left(\mathscr{T}_{m}\right)=\operatorname{Ifp} \leq F_{m} \\
& F_{m}(f) \sigma \stackrel{\text { def }}{=} \begin{cases}0 & \sigma \in \mathscr{B} \\
\inf \left\{f\left(\sigma^{\prime}\right)+1 \mid\left(\sigma, \sigma^{\prime}\right) \in \tau\right\} & \sigma \in \operatorname{pre}_{\tau}(\operatorname{dom}(f)) \\
\text { undefined } & \text { otherwise }\end{cases}
\end{aligned}
$$

Theorem
A program may terminate for traces starting from a set of initial state \mathscr{J} if and only if $\mathscr{J} \subseteq \operatorname{dom}\left(\mathscr{R}_{m}\right)$

Potential Termination Semantics Exercise

Show that the following fixpoint definition of the potential termination semantics does not guarantee the existence of a least fixpoint:

$$
\begin{aligned}
& \mathscr{R}_{m} \stackrel{\text { def }}{=} \alpha_{m}\left(\mathscr{T}_{m}\right)=\operatorname{lfp} \leq F_{m} \\
& F_{m}(f) \sigma \stackrel{\text { def }}{=} \begin{cases}0 & \sigma \in \mathscr{B} \\
\text { sup }\left\{f\left(\sigma^{\prime}\right)+1 \mid\left(\sigma, \sigma^{\prime}\right) \in \tau\right\} & \sigma \in \operatorname{pre}_{\tau}(\operatorname{dom}(f)) \\
\text { undefined } & \text { otherwise }\end{cases}
\end{aligned}
$$

Hint: find a program for which the values of the iterates of the potential termination semantics are always increasing

 termination semantics
 termination trace semantics
 maximal trace semantics

Definite Termination Semantics Ranking Abstraction

$\bar{\alpha}_{M}(T) \stackrel{\text { def }}{=} \bar{\alpha}_{V}(\vec{\alpha}(T))$
$\bar{\alpha}_{V}(\varnothing) \stackrel{\text { def }}{=} \dot{\varnothing}$
$\bar{\alpha}_{V}(r) \sigma \stackrel{\text { def }}{=} \begin{cases}0 & \forall \sigma^{\prime} \in \Sigma:\left(\sigma, \sigma^{\prime}\right) \notin r \\ \sup \left\{\bar{\alpha}_{V}(r) \sigma^{\prime}+1 \mid \sigma^{\prime} \in \operatorname{dom}\left(\bar{\alpha}_{V}(r)\right) \wedge\left(\sigma, \sigma^{\prime}\right) \in r\right\} & \text { otherwise }\end{cases}$
$\vec{\alpha}(T) \stackrel{\text { def }}{=}\left\{\left(\sigma, \sigma^{\prime}\right) \in \Sigma \times \Sigma \mid \exists t \in \Sigma^{*}, t^{\prime} \in \Sigma^{\infty}: t \sigma \sigma^{\prime} t^{\prime} \in T\right\}$

Definite Termination Semantics

$$
\begin{aligned}
& \mathscr{R}_{M} \stackrel{\text { def }}{=} \bar{\alpha}_{M}\left(\mathscr{T}_{M}\right)=\operatorname{lfp} \leq \bar{F}_{M} \\
& \bar{F}_{M}(f) \sigma \stackrel{\text { def }}{=} \begin{cases}0 & \sigma \in \mathscr{B} \\
\sup \left\{f\left(\sigma^{\prime}\right)+1 \mid\left(\sigma, \sigma^{\prime}\right) \in \tau\right\} & \sigma \in \tilde{p r e}_{\tau}(\operatorname{dom}(f)) \\
\text { undefined } & \text { otherwise }\end{cases}
\end{aligned}
$$

Theorem
A program must terminate for traces starting from a set of initial states \mathscr{J} if and only if $\mathscr{I} \subseteq \operatorname{dom}\left(\mathscr{R}_{M}\right)$

 termination semantics
 termination trace semantics
 maximal trace semantics

Denotational Definite Termination Semantics

We define the definite termination semantics $\mathscr{R}_{M}: \Sigma \rightharpoonup \mathbb{O}$ by partitioning with respect to the program control points, i.e.,
$\mathscr{R}_{M}: \mathscr{L} \rightarrow(\mathscr{E} \rightharpoonup \mathbb{O})$.
Thus, for each program instruction stat, we define a transformer
$\mathscr{R}_{M} \llbracket$ stat $\rrbracket:(\mathscr{E} \rightharpoonup \mathbb{O}) \rightarrow(\mathscr{E} \rightharpoonup \mathbb{O}):$

- $\mathscr{R}_{M} \llbracket^{\ell} X \leftarrow e \rrbracket$
- $\mathscr{R}_{M} \llbracket \mathrm{if}^{\ell} e \bowtie 0$ then $s \rrbracket$
- $\mathscr{R}_{M} \llbracket$ while ${ }^{\ell} e \bowtie 0$ do s done】

- $\mathscr{R}_{M} \llbracket s_{1} ; s_{2} \rrbracket$

Denotational Definite Termination Semantics

$\mathscr{R}_{M} \llbracket^{\ell} X \leftarrow e \rrbracket$
$\mathscr{R}_{M} \llbracket^{\ell} X \leftarrow e \rrbracket f \stackrel{\text { def }}{=} \lambda \rho .\left\{\begin{array}{lr}\sup \{f(\rho[X \mapsto v])+1 \mid v \in E \llbracket e \rrbracket \rho\} & \exists \bar{v} \in E \llbracket e \rrbracket \rho \wedge \\ \text { undefined } & \forall v \in E \llbracket e \rrbracket \rho: \rho[X \mapsto v] \in \operatorname{dom}(f)\end{array}\right.$

Example:

Let $\mathbb{V}=\{x\}$ and $f: \mathscr{E} \rightharpoonup \mathbb{O}$ defined as follows:
$f(\rho) \stackrel{\text { def }}{=} \begin{cases}2 & \rho(x)=1 \\ 3 & \rho(x)=2 \\ \text { undefined } & \text { otherwise }\end{cases}$
$\mathscr{R}_{M} \llbracket x \leftarrow x+[1,2] \rrbracket f \stackrel{\text { def }}{=} \lambda \rho \cdot \begin{cases}4 & \rho(x)=0 \\ \text { undefined } & \text { otherwise }\end{cases}$

Denotational Definite Termination Semantics

$\mathscr{R}_{M} \llbracket$ if ${ }^{\ell} e \bowtie 0$ then $s \rrbracket$

$\mathscr{R}_{M}\left[\mathbf{I f}{ }^{\ell} e \bowtie 0\right.$ then $s \| f \stackrel{\text { def }}{=} \lambda \rho .\left\{\begin{array}{l}(1) \\ (2) \\ (3)\end{array}\right.$
undefined otherwise
(1) $\sup \left\{\mathscr{R}_{M} \llbracket s \rrbracket f(\rho)+1, f(\rho)+1\right\} \quad \rho \in \operatorname{dom}\left(\mathscr{R}_{M} \llbracket s \rrbracket f\right) \cap \operatorname{dom}(f) \wedge$ $\exists v_{1}, v_{2} \in E \llbracket e \rrbracket \rho: v_{1} \bowtie 0 \wedge v_{2} \bowtie 0$
(2) $\mathscr{R}_{M} \llbracket s \rrbracket f(\rho)+1$
$\rho \in \operatorname{dom}\left(\mathscr{R}_{M} \llbracket s \rrbracket f\right) \wedge$
$\forall v \in E \llbracket e \rrbracket \rho: v \bowtie 0$
(3) $f(\rho)+1$
$\rho \in \operatorname{dom}(f) \wedge \forall v \in E \llbracket e \rrbracket \rho: v \nsim 0$

Denotational Definite Termination Semantics

$\mathscr{R}_{M} \llbracket i \mathbf{i f}{ }^{\ell} e \bowtie 0$ then $s \rrbracket$ (continue)

Example:

Let $\mathbb{V}=\{x\}$ and $f: \mathscr{E} \rightharpoonup \mathbb{O}$, and $\mathscr{R}_{M} \mathbb{I} s \mathbb{1} f$ defined as follows:
$f \stackrel{\text { def }}{=} \lambda \rho \cdot \begin{cases}1 & \rho(x) \leq 0 \\ \text { undefined } & \text { otherwise }\end{cases}$
$\mathscr{R}_{M} \llbracket s \rrbracket f \stackrel{\text { def }}{=} \lambda \rho \cdot \begin{cases}3 & 0 \leq \rho(x) \\ \text { undefined } & \text { otherwise }\end{cases}$
We have
$\mathscr{R}_{M} \llbracket$ if $3-x<0$ then $s \rrbracket f \stackrel{\text { def }}{=} \lambda \rho \cdot \begin{cases}2 & \rho(x) \leq 0 \\ 4 & 3<\rho(x) \\ \text { undefined } & \text { otherwise }\end{cases}$
and $\mathscr{R}_{M}[$ if $[-\infty,+\infty] \neq 0$ then $s \rrbracket f \stackrel{\text { def }}{=} \lambda \rho$.
$\left\{\begin{array}{l}4 \\ u\end{array}\right.$

$$
\rho(x)=0
$$

undefined otherwise

Denotational Definite Termination Semantics

$\mathscr{R}_{M} \llbracket$ while ${ }^{\ell} e \bowtie 0$ do s done】

$F_{M}(x) \stackrel{\text { def }}{=} \lambda \rho \cdot\{\begin{array}{l}(1) \\ (2\end{array} \underbrace{3}_{3}$ undefined otherwise
(1) $\sup \left\{\mathscr{R}_{M} \llbracket s \rrbracket x(\rho)+1, f(\rho)+1\right\} \quad \rho \in \operatorname{dom}\left(\mathscr{R}_{M} \llbracket s \rrbracket x\right) \cap \operatorname{dom}(f) \wedge$ $\exists v_{1}, v_{2} \in E \llbracket e \rrbracket \rho: v_{1} \bowtie 0 \wedge v_{2} \bowtie 0$
(2) $\mathscr{R}_{M} \llbracket s \rrbracket x(\rho)+1$
(3) $f(\rho)+1$

$$
\begin{aligned}
& \rho \in \operatorname{dom}\left(\mathscr{R}_{M} \llbracket s \rrbracket x\right) \wedge \\
& \forall v \in E \llbracket e \rrbracket \rho: v \bowtie 0
\end{aligned}
$$

Denotational Definite Termination Semantics

$\mathscr{R}_{M} \llbracket s_{1} ; s_{2} \rrbracket$
$\mathscr{R}_{M} \llbracket s_{1} ; s_{2} \rrbracket f \stackrel{\text { def }}{=} \mathscr{R}_{M} \llbracket s_{1} \rrbracket\left(\mathscr{R}_{M} \llbracket s_{2} \rrbracket f\right)$

Denotational Definite Termination Semantics

Definition

The definite termination semantics $\mathscr{R}_{M} \llbracket$ stat $^{\ell} \rrbracket: \mathscr{E} \rightharpoonup \mathbb{O}$ of a program stat ${ }^{\ell}$ is:
$\mathscr{R}_{M} \llbracket \operatorname{stat}^{\ell} \rrbracket \stackrel{\text { def }}{=} \mathscr{R}_{M} \llbracket \operatorname{stat} \rrbracket(\lambda \rho .0)$
where $\mathscr{R}_{M} \llbracket$ stat $\rrbracket:(\mathscr{E} \rightharpoonup \mathbb{O}) \rightarrow(\mathscr{E} \rightharpoonup \mathbb{O})$ is
the definite termination semantics of each program instruction stat

Theorem

A program stat ${ }^{\ell}$ must terminate for traces starting from a set of initial states \mathscr{F} if and only if $\mathscr{I} \subseteq \operatorname{dom}\left(\mathscr{R}_{m} \llbracket\right.$ stat $\left.^{\ell} \rrbracket\right)$

Abstract Interpretation Recipe

practical tools

targeting specific programs
algorithmic approaches
to decide program properties
mathematical models
of the program behavior

Piecewise-Defined Ranking Functions Abstract Domain

Concretization-Based Piecewise Abstraction

Definite Termination Semantics

$$
\begin{aligned}
& \mathscr{R}_{M} \stackrel{\text { def }}{=} \bar{\alpha}_{M}\left(\mathscr{T}_{M}\right)=\mid \text { lfp } \leq \bar{F}_{M} f_{1} \leq f_{2} \stackrel{\text { def }}{=} \operatorname{dom}\left(f_{1}\right) \subseteq \operatorname{dom}\left(f_{2}\right) \wedge \forall x \in \operatorname{dom}\left(f_{1}\right): f_{1}(x) \leq f_{2}(x) \\
& \bar{F}_{M}(f) \sigma \stackrel{\sigma \in \mathscr{B}}{=} \stackrel{\text { def }}{=} \begin{cases}0 & \\
\sup \left\{f\left(\sigma^{\prime}\right)+1 \mid\left(\sigma, \sigma^{\prime}\right) \in \tau\right\} & \sigma \in \operatorname{pr}_{\tau}(\operatorname{dom}(f))\end{cases}
\end{aligned}
$$

Concretization-Based Piecewise Abstraction

By pointwise lifiting we obtain an abstraction $\mathscr{R}_{M}^{\#}$ of \mathscr{R}_{M} :

$$
\mathscr{R}_{M}: \mathscr{L} \rightarrow(\mathscr{E} \rightarrow \mathbb{O})
$$

$$
\langle\mathscr{L} \rightarrow(\mathscr{E}-\mathbb{O}), \dot{\leqslant}\rangle \quad\left\langle\mathscr{L} \rightarrow \mathscr{A}, \mathfrak{\aleph}_{A}\right\rangle
$$

$$
\mathscr{R}_{M}^{\#}: \mathscr{L} \rightarrow \mathscr{A}
$$

Piecewise-Defined Ranking Functions Abstract Domain

Example
${ }^{1} \mathrm{x} \leftarrow[-\infty,+\infty]$
while ${ }^{2}(x \geq 0)$ do ${ }^{3} x \leftarrow-2 \cdot x+10$
od 4

Piecewise-Defined Ranking Functions Abstract Domain Linear Constraints Auxiliary Abstract Domain

- Parameterized by an underlying numerical abstract domain $\left\langle\mathscr{D}, \sqsubseteq_{D}\right\rangle$ (ie., intervals, octagons, or polyhedra):

- \mathscr{C} is a set of linear constraints in canonical form, equipped with a total order \leq_{C} :

$$
\begin{aligned}
\mathscr{C} & \stackrel{\text { def }}{=}\left\{c_{1} \cdot X_{1}+c_{k} \cdot X_{k}+c_{k+1} \geq 0 \mid X_{1}, \ldots, X_{k} \in \mathbb{V}\right. \\
& \left.\wedge c_{1}, \ldots, c_{k+1} \in \mathbb{Z} \wedge \operatorname{gcd}\left(\left|c_{1}\right|, \ldots,\left|c_{k+1}\right|\right)=1\right\}
\end{aligned}
$$

$\lambda \times .5$

Piecewise-Defined Ranking Functions Abstract Domain

Functions Auxiliary Abstract Domain

- Parameterized by an underlying numerical abstract domain $\left\langle\mathscr{D}, \sqsubseteq_{D}\right\rangle$
- $\mathscr{F} \stackrel{\text { def }}{=}\left\{\perp_{F}\right\} \cup\left(\mathbb{Z}^{|\mathbb{V}|} \rightarrow \mathbb{N}\right) \cup\left\{T_{F}\right\}$

Piecewise-Defined Ranking Functions Abstract Domain

 Functions Auxiliary Abstract Domain (continue)- approximation order $\preccurlyeq_{F}[D]$, where $D \in \mathscr{D}$:
- between defined leaf nodes:

$$
f_{1} \leqslant_{F}[D] f_{2} \stackrel{\text { def }}{=} \forall \rho \in \gamma_{D}(D): f_{1}\left(\ldots, \rho\left(X_{i}\right), \ldots\right) \leq f_{2}\left(\ldots, \rho\left(X_{i}\right), \ldots\right)
$$

- otherwise (i.e., when one or both leaf nodes are undefined):

Piecewise-Defined Ranking Functions Abstract Domain Functions Auxiliary Abstract Domain (continue)

- computational order $\sqsubseteq_{F}[D]$, where $D \in \mathscr{D}$:
- between defined leaf nodes:

$$
f_{1} \sqsubseteq_{F}[D] f_{2} \stackrel{\text { def }}{=} \forall \rho \in \gamma_{D}(D): f_{1}\left(\ldots, \rho\left(X_{i}\right), \ldots\right) \leq f_{2}\left(\ldots, \rho\left(X_{i}\right), \ldots\right)
$$

- otherwise (i.e., when one or both leaf nodes are undefined):

Piecewise-Defined Ranking Functions Abstract Domain

- $\mathscr{A} \stackrel{\text { def }}{=}\{\operatorname{LEAF}: f \mid f \in \mathscr{F}\} \cup\left\{\operatorname{NODE}\{c\}: t_{1} ; t_{2} \mid c \in \mathscr{C} \wedge t_{1}, t_{2} \in \mathscr{A}\right\}$
- concretization function $\gamma_{A}: \mathscr{A} \rightarrow(\mathscr{E} \rightharpoonup \mathbb{O})$:

$$
\begin{aligned}
& \gamma_{A}(t) \stackrel{\text { def }}{=} \bar{\gamma}_{A}[\varnothing](t) \\
& \text { where } \bar{\gamma}_{A}: \mathscr{P}\left(\mathscr{C} / \equiv{ }_{C}\right) \rightarrow \mathscr{A} \rightarrow(\mathscr{E} \rightharpoonup \mathbb{O}): \\
& \bar{\gamma}_{A}[C](\operatorname{LEAF}: f) \stackrel{\text { def }}{=} \gamma_{F}\left[\alpha_{C}(C)\right](f) \\
& \bar{\gamma}_{A}[C]\left(\operatorname{NODE}\{c\}: t_{1} ; t_{2}\right) \stackrel{\text { def }}{=} \bar{\gamma}_{A}[C \cup\{c\}]\left(t_{1}\right) \dot{\cup} \bar{\gamma}_{A}[C \cup\{\neg C\}]\left(t_{2}\right) \\
& \text { and } \gamma_{F}: \mathscr{D} \xrightarrow{\mathscr{F}} \rightarrow(\mathscr{E} \rightarrow \mathbb{O}): \\
& \gamma_{F}[D]\left(\perp_{F}\right) \stackrel{\text { def }}{=} \dot{\varnothing} \\
& \gamma_{F}[D](f) \stackrel{\text { def }}{=} \lambda \rho \in \gamma_{D}(D): f\left(\ldots, \rho\left(X_{i}\right), \ldots\right) \\
& \gamma_{F}[D]\left(T_{F}\right) \stackrel{\text { def }}{=} \dot{\varnothing}
\end{aligned}
$$

Piecewise-Defined Ranking Functions Abstract Domain Abstract Domain Operators

- They manipulate elements in $\mathscr{A}_{\text {NIL }} \stackrel{\text { def }}{=}\{$ NIL $\} \cup \mathscr{A}$
- The binary operators rely on a tree unification algorithm
- approximation order \preccurlyeq_{A} and computational order \sqsubseteq_{A}
- approximation join \vee_{A} and computational join \sqcup_{A}
- meet $\boldsymbol{\lambda}_{A}$
- widening ∇_{A}
- The unary operators rely on a tree pruning algorithm
- assignment ASSIG $N_{A} \llbracket X \leftarrow e \rrbracket$
- test FILTER A 【 $e \rrbracket$

Piecewise-Defined Ranking Functions Abstract Domain

 Tree UnificationGoal: find a common refinement for the given decision trees

- Base cases:

f_{1}	f_{2}	f_{1}	f_{2}
f_{1}	\| NIL-	f_{1}	$\sim_{\sim}^{-\cdots-\cdots}$
NIL	f_{2}	N--....-	f_{2}
NIL	N-*....-	- NIL	NIL

Piecewise-Defined Ranking Functions Abstract Domain

 Tree Unification (continue)(1a) c_{2} is redundant

- Case (1)

(1b) $\neg c_{2}$ is redundant

(1C) c_{2} is added to t_{1}

Piecewise-Defined Ranking Functions Abstract Domain Tree Unification (continue)

- Case (2) (simmetric to (1))
- Case (3)
(1a) c is redundant

(1C) c is kept in t_{1} and t_{2}

Piecewise-Defined Ranking Functions Abstract Domain

Tree Unification (continue)

Example

Piecewise-Defined Ranking Functions Abstract Domain

Order

1. Perform tree unification
2. Recursively descend the trees while accumulating the linear constraints encountered along the paths into a set of constraints C
3. Compare the leaf nodes using the approximation order $\preccurlyeq_{F}\left[\alpha_{C}(C)\right]$ or the computational order $\sqsubseteq_{F}\left[\alpha_{C}(C)\right]$

The concretization function γ_{A} is monotonic with respect to \preccurlyeq_{A} :

Lemma

$$
\forall t_{1}, t_{2} \in \mathscr{A}: t_{1} \preccurlyeq_{A} t_{2} \Rightarrow \gamma_{A}\left(t_{1}\right) \preccurlyeq \gamma_{A}\left(t_{2}\right)
$$

Piecewise-Defined Ranking Functions Abstract Domain Join

1. Perform tree unification
2. Recursively descend the trees while accumulating the linear constraints encountered along the paths into a set of constraints C
3. $\begin{aligned} \mathrm{NIL} \mathrm{\vee}_{A} t & \stackrel{\text { def }}{=} t \\ t \mathrm{~V}_{A} \mathrm{NIL} & \stackrel{\text { def }}{=} t\end{aligned}$
4. Join the leaf nodes using the approximation join $\vee_{F}\left[\alpha_{C}(C)\right]$ or the computational join $\sqcup_{F}\left[\alpha_{C}(C)\right]$

Piecewise-Defined Ranking Functions Abstract Domain Join (continue)

- approximation join $\vee_{F}[D]$, where $D \in \mathscr{D}$:
- between defined leaf nodes:

$$
\begin{aligned}
& f_{1} \vee_{F}[D] f_{2} \stackrel{\text { def }}{=} \begin{cases}f & f \in \mathscr{F} \backslash\left\{\perp_{F}, \top_{F}\right\} \\
\mathrm{T}_{F} & \text { otherwise }\end{cases} \\
& \text { where } f \stackrel{\text { def }}{=} \lambda \rho \in \gamma_{D}(D): \max \left(f_{1}\left(\ldots, \rho\left(X_{i}\right), \ldots\right), f_{2}\left(\ldots, \rho\left(X_{i}\right), \ldots\right)\right)
\end{aligned}
$$

Example:

Piecewise-Defined Ranking Functions Abstract Domain Join (continue)

- approximation join $\vee_{F}[D]$, where $D \in \mathscr{D}$:
- between defined leaf nodes:

$$
\begin{aligned}
& f_{1} \vee_{F}[D] f_{2} \stackrel{\operatorname{def}}{=} \begin{cases}f & f \in \mathscr{F} \backslash\left\{\perp_{F}, \mathrm{\top}_{F}\right\} \\
\mathrm{T}_{F} & \text { otherwise }\end{cases} \\
& \text { where } f \stackrel{\text { def }}{=} \lambda \rho \in \gamma_{D}(D): \max \left(f_{1}\left(\ldots, \rho\left(X_{i}\right), \ldots\right), f_{2}\left(\ldots, \rho\left(X_{i}\right), \ldots\right)\right)
\end{aligned}
$$

- otherwise (i.e., when one or both leaf nodes are undefined):

$$
\begin{aligned}
& \perp_{F} \bigvee_{F}[D] f \stackrel{\text { def }}{=} \perp_{F} \quad f \in \mathscr{F} \backslash\left\{T_{F}\right\} \\
& f \vee_{F}[D] \perp_{F} \stackrel{\text { def }}{=} \perp_{F} \quad f \in \mathscr{F} \backslash\left\{\mathrm{~T}_{F}\right\} \\
& \mathrm{T}_{F} \vee_{F}[D] f \stackrel{\text { def }}{=} \mathrm{T}_{F} \quad f \in \mathscr{F} \backslash\left\{\perp_{F}\right\} \\
& f \vee_{F}[D] \mathrm{T}_{F} \stackrel{\text { def }}{=} \mathrm{T}_{F} \quad f \in \mathscr{F} \backslash\left\{\perp_{F}\right\}
\end{aligned}
$$

Piecewise-Defined Ranking Functions Abstract Domain

 Join (continue)Example

Piecewise-Defined Ranking Functions Abstract Domain Join (continue)

- computational join $\sqcup_{F}[D]$, where $D \in \mathscr{D}$:
- between defined leaf nodes:

$$
\begin{aligned}
& f_{1} \vee_{F}[D] f_{2} \stackrel{\text { def }}{=} \begin{cases}f & f \in \mathscr{F} \backslash\left\{\perp_{F}, \mathrm{~T}_{F}\right\} \\
\mathrm{T}_{F} & \text { otherwise }\end{cases} \\
& \text { where } f \stackrel{\text { def }}{=} \lambda \rho \in \gamma_{D}(D): \max \left(f_{1}\left(\ldots, \rho\left(X_{i}\right), \ldots\right), f_{2}\left(\ldots, \rho\left(X_{i}\right), \ldots\right)\right)
\end{aligned}
$$

- otherwise (i.e., when one or both leaf nodes are undefined):

$$
\begin{array}{ll}
\perp_{F} \sqcup_{F}[D] f \stackrel{\text { def }}{=} f & f \in \mathscr{F} \\
f \sqcup_{F}[D] \perp_{F} \stackrel{\text { def }}{=} f & f \in \mathscr{F} \\
\mathrm{~T}_{F} \sqcup_{F}[D] f \stackrel{\text { def }}{=} \mathrm{T}_{F} & f \in \mathscr{F} \\
f \sqcup_{F}[D] \mathrm{T}_{F} \stackrel{\text { def }}{=} \mathrm{T}_{F} & f \in \mathscr{F}
\end{array}
$$

Piecewise-Defined Ranking Functions Abstract Domain Meet

1. Perform tree unification
2. Recursively descend the trees while accumulating the linear constraints encountered along the paths into a set of constraints C
3. $\begin{aligned} & \text { NIL } \vee_{A} t \stackrel{\text { def }}{=} \text { NIL } \\ t \vee_{A} \text { NIL } & \stackrel{\text { def }}{=} N I L\end{aligned}$
4. Join the leaf nodes using the approximation join $\vee_{F}\left[\alpha_{C}(C)\right]$

Piecewise-Defined Ranking Functions Abstract Domain

Meet (continue)
Example

Piecewise-Defined Ranking Functions Abstract Domain Widening

Goal: try to predict a valid ranking function

The prediction can (temporarily) be wrong!, i.e.,

- under-approximates the value of \mathscr{R}_{M} and/or
- over-approximates the domain $\operatorname{dom}\left(\mathscr{R}_{M}\right)$ of \mathscr{R}_{M}

Example

Piecewise-Defined Ranking Functions Abstract Domain Widening (continue)

1. Check for case \mathbf{A} (i.e., wrong domain predictions)
2. Perform domain widening
3. Check for case B or C (i.e., wrong value predictions)
4. Perform value widening

Piecewise-Defined Ranking Functions Abstract Domain

Widening (continue)

Lemma

Let $\operatorname{dom}\left(\gamma_{A}\left(\mathscr{R}_{M}^{\# n}(\ell)\right)\right) \backslash \operatorname{dom}\left(\mathscr{R}_{M}(\ell)\right) \neq \varnothing$. Then, in case A, we have $\operatorname{dom}\left(\gamma_{A}\left(\mathscr{R}_{M}^{\# n+1}(\ell)\right)\right) \backslash \operatorname{dom}\left(\mathscr{R}_{M}(\ell)\right) \subset \operatorname{dom}\left(\gamma_{A}\left(\mathscr{R}_{M}^{\# n}(\ell)\right)\right) \backslash \operatorname{dom}\left(\mathscr{R}_{M}(\ell)\right)$.
(see proof in [Urban15])

Piecewise-Defined Ranking Functions Abstract Domain Widening (continue)

Lemma

Let $\operatorname{dom}\left(\gamma_{A}\left(\mathscr{R}_{M}^{\# n}(\ell)\right)\right) \backslash \operatorname{dom}\left(\mathscr{R}_{M}(\ell)\right) \neq \varnothing$. Then, in case A, we have $\operatorname{dom}\left(\gamma_{A}\left(\mathscr{R}_{M}^{\# n+1}(\ell)\right)\right) \backslash \operatorname{dom}\left(\mathscr{R}_{M}(\ell)\right) \subset \operatorname{dom}\left(\gamma_{A}\left(\mathscr{R}_{M}^{\# n}(\ell)\right)\right) \backslash \operatorname{dom}\left(\mathscr{R}_{M}(\ell)\right)$.

(see proof in [Urban15])

1. Perform tree unification
2. Recursively descend the trees while accumulating the linear constraints encountered along the paths into a set of constraints C

\square

\square

Piecewise-Defined Ranking Functions Abstract Domain Widening (continue)

Goal: limit the size of the decision trees

Left unification: variant of tree unification that forces the structure of t_{1} on t_{2}

- Base case:

Piecewise-Defined Ranking Functions Abstract Domain

Widening (continue)
Domain Widening

- Case (1)
(1a) c_{2} is redundant

(1b) $\neg c_{2}$ is redundant

(1C) c_{2} is removed from t_{2}

Piecewise-Defined Ranking Functions Abstract Domain

 Widening (continue)Domain Widening

- Case (2) (as for tree unification)
- Case (3)
(1a) c is redundant

(1C) c is kept in t_{1} and t_{2}

Piecewise-Defined Ranking Functions Abstract Domain

Widening (continue)
Check for Case B or C

Lemma

Let $\gamma_{A}\left(\mathscr{R}_{M}^{\# n}(\ell)\right)(\bar{\rho})<\mathscr{R}_{M}(\ell)(\bar{\rho})$ for some
$\bar{\rho} \in \operatorname{dom}\left(\mathscr{R}_{M}(\ell)\right) \cap \operatorname{dom}\left(\gamma_{A}\left(\mathscr{R}_{M}^{\# n}\right)(\ell)\right)$ (case B). Then, there exists
$\rho \in \operatorname{dom}\left(\gamma_{A}\left(\mathscr{R}_{M}^{\# n+1}(\ell)\right)\right) \cap \operatorname{dom}\left(\mathscr{R}_{M}^{\# n}(\ell)\right)$ such that
$\gamma_{A}\left(\mathscr{R}_{M}^{\# n}(\ell)\right)(\rho)<\gamma_{A}\left(\mathscr{R}_{M}^{\# n+1}(\ell)\right)(\rho)$.

Piecewise-Defined Ranking Functions Abstract Domain

Widening (continue)

Lemma

Let $\operatorname{dom}\left(\gamma_{A}\left(\mathscr{R}_{M}^{\# n}(\ell)\right)\right) \backslash \operatorname{dom}\left(\mathscr{R}_{M}(\ell)\right) \neq \varnothing$. Then, for all $\rho \in \operatorname{dom}\left(\gamma_{A}\left(\mathscr{R}_{M}^{\# n}(\ell)\right)\right) \backslash \operatorname{dom}\left(\mathscr{R}_{M}(\ell)\right)$ in case C, we have $\gamma_{A}\left(\mathscr{R}_{M}^{\# n}(\ell)\right)(\rho)<\gamma_{A}\left(\mathscr{R}_{M}^{\# n+1}(\ell)\right)(\rho)$.
(see proof in [Urban15])

Piecewise-Defined Ranking Functions Abstract Domain Widening (continue) Check for Case B or C

1. Recursively descend the trees while accumulating the linear constraints encountered along the paths into a set of constraints C
```
2. flof
f
```


Piecewise-Defined Ranking Functions Abstract Domain

 Widening (continue)
Value Widening

1. Recursively descend the trees while accumulating the linear constraints encountered along the paths into a set of constraints C
2. Widen each (defined) leaf node f with respect to each of their adjacent (defined) leaf node \bar{f} using the extrapolation operator $\nabla_{F}\left[\alpha_{C}(\bar{C}), \alpha_{C}(C)\right]$, where \bar{C} is the set of constraints along the path to \bar{f}

Example:

Piecewise-Defined Ranking Functions Abstract Domain Tree Pruning

Goal: add a set J of linear constraints to the decision tree

- Base case ($J=\varnothing$)

Piecewise-Defined Ranking Functions Abstract Domain

 Tree Pruning (continue)- Case (1)
(1a) $\min J$ is redundant
(1b) $\neg \min J$ is redundant

$\min J \leq_{C} c$

Piecewise-Defined Ranking Functions Abstract Domain Tree Pruning (continue)

- Case (2)

$$
c \leq_{C} \min J
$$

- Case (3)

(2a) c is redundant

(2b) $\neg c$ is redundant

(2c) c is kept in t

(3a) $\min J$ is redundant

(3C) $\min J$ is kept in t

Piecewise-Defined Ranking Functions Abstract Domain

Tree Pruning (continue)
Example

Piecewise-Defined Ranking Functions Abstract Domain

Assignments

- Base case (\square
Apply AS $\overleftarrow{S \text { SIG }} \mathrm{N}_{F} \llbracket X \leftarrow e \rrbracket\left[\alpha_{C}(C)\right]$ on the defined leaf nodes

$$
\begin{aligned}
& \operatorname{ASSIG} \mathrm{N}_{F} \llbracket X \leftarrow e \rrbracket[D](f) \stackrel{\text { def }}{=}\left\{\begin{array}{ll}
\bar{f} & \bar{f} \in \mathscr{F} \backslash\left\{\perp_{F}, \mathrm{~T}_{F}\right\} \\
\mathrm{T}_{F} & \text { otherwise }
\end{array} \quad f \in \mathscr{F} \backslash\left\{\perp_{F}, \mathrm{~T}_{F}\right\}\right. \\
& \text { where } \bar{f}\left(\ldots, X_{i}, X, \ldots\right) \stackrel{\text { def }}{=} \max \left\{f\left(\ldots, \rho\left(X_{i}\right), v, \ldots\right)+1 \mid \rho \in \gamma_{D}(R) \wedge v \in E \llbracket e \rrbracket \rho\right\} \\
& \text { and } R \stackrel{\operatorname{def}}{=} \operatorname{ASSIGN}{ }_{D} \llbracket X \leftarrow e \rrbracket D
\end{aligned}
$$

Example:
$\operatorname{ASSIG}{ }_{F} \llbracket x \leftarrow x+[1,2] \rrbracket\left[\mathrm{T}_{D}\right](\lambda x . x+1)=\lambda x . x+4$
$($ since $f(x+[1,2])+1=x+[1,2]+1+1=x+[3,4]$ and $\max (3,4)=4$

Piecewise-Defined Ranking Functions Abstract Domain

Assignments
-

> Convert ASSIG $N_{D} \llbracket X \leftarrow e \rrbracket\left(\alpha_{C}(\{c\})\right.$ and ASSIGN $_{D} \llbracket X \leftarrow e \rrbracket\left(\alpha_{C}(\{\neg c\})\right.$
into sets I and J of linear constraints in canonical form
case (1) $I=J=\varnothing$

case (3) $\perp_{C} \in I \wedge J=\varnothing$
\square
case (2) $I=\varnothing \wedge \perp_{C} \in J$

case (4)

1. perform tree pruning on

and
2. join the results with \vee_{A}

Piecewise-Defined Ranking Functions Abstract Domain

 Tests1. Recursively descend the tree and apply STEP F_{F} on the defined leaf nodes to account for one more execution step needed before termination:
$\operatorname{STEP}_{F}(f) \stackrel{\text { def }}{=} \lambda X_{1}, \ldots, X_{k} \cdot f\left(X_{1}, \ldots, X_{k}\right)+1 \quad f \in \mathscr{F} \backslash\left\{\perp_{F}, \mathrm{~T}_{F}\right\}$
2. Convert e into a set J of linear constraints in canonical form

Example: $\alpha_{C}\left(\right.$ FILTER $\left._{D} \llbracket e \rrbracket T_{D}\right)$
where $\left\langle\mathscr{D}, \sqsubseteq_{D}\right\rangle$ is the underlying numerical domain
3. Perform tree pruning with J

Abstract Definite

 Termination Semanticsstat;}\mp@subsup{}{}{\prime}\mathrm{ Stat
stat;}\mp@subsup{}{}{\prime}\mathrm{ Stat
x
$-\exp$
$\exp \diamond \exp$
c
$\left[c, c^{\prime}\right]$

For each program instruction stat, we define a transformer $\mathscr{R}_{M}^{\#} \llbracket$ stat $\rrbracket: \mathscr{A} \rightarrow \mathscr{A}$:

- $\mathscr{R}_{M}^{\#} \Pi^{\ell} X \leftarrow e \rrbracket t \stackrel{\text { def }}{=} \mathrm{ASSIG} \mathrm{N}_{A} \llbracket X \leftarrow e \rrbracket t$

Lemma (Soundness)

$$
\mathscr{R}_{M} \mathbb{I}^{\ell} X \leftarrow e \rrbracket \gamma_{A}(t) \leqslant \gamma_{A}\left(\mathscr{R}_{M}^{\#} \Pi^{\ell} X \leftarrow e \rrbracket t\right)
$$

(see proof in [Urban15])

Abstract Definite Termination Semantics

$\left\{\begin{array}{l}-\exp \\ \exp \diamond \exp \\ c \\ {\left[c, c^{\prime}\right]}\end{array}\right.$

For each program instruction stat, we define a transformer $\mathscr{R}_{M}^{\#} \llbracket$ stat $\rrbracket: \mathscr{A} \rightarrow \mathscr{A}:$

- $\mathscr{R}_{M}^{\#} \Pi^{\ell} X \leftarrow e \rrbracket t \stackrel{\text { def }}{=} \mathrm{AS} \overleftarrow{S I G} \mathrm{~N}_{A} \llbracket X \leftarrow e \rrbracket t$
- $\mathscr{R}_{M}^{\#} \llbracket i f{ }^{\ell} e \bowtie 0$ then $s \rrbracket t \stackrel{\text { def }}{=}$

FILTER $_{A} \llbracket e \bowtie 0 \rrbracket\left(\mathscr{R}_{M}^{\#} \llbracket s \rrbracket t\right) \vee_{T}$ FILTER $_{A} \llbracket e \bowtie 0 \rrbracket t$

Lemma (Soundness)

$\mathscr{R}_{M} \llbracket$ if ${ }^{\ell} e \bowtie 0$ then $s \rrbracket \gamma_{A}(t) \leqslant \gamma_{A}\left(\mathscr{R}_{M}^{\#} \llbracket\right.$ if ${ }^{\ell} e \bowtie 0$ then $\left.s \rrbracket t\right)$
(see proof in [Urban15])

Abstract Definite Termination Semantics

For each program instruction stat, we define a transformer $\mathscr{R}_{M}^{\#}[$ stat $]: \mathscr{A} \rightarrow \mathscr{A}:$

- $\mathscr{R}_{M}^{\#} \Pi^{\ell} X \leftarrow e \rrbracket t \stackrel{\text { def }}{=} \mathrm{ASSIG} \mathrm{S}_{A} \llbracket X \leftarrow e \rrbracket t$
- $\mathscr{R}_{M}^{\#} \llbracket i \mathbf{i f}^{\ell} e \bowtie 0$ then $s \rrbracket t \stackrel{\text { def }}{=}$
$\mathrm{FILTER}_{A} \llbracket e \bowtie 0 \rrbracket\left(\mathscr{R}_{M}^{\#} \llbracket s \rrbracket t\right) \vee_{T}$ FILTER $_{A} \llbracket e \bowtie 0 \rrbracket t$
- $\mathscr{R}_{M}^{\#} \llbracket$ while ${ }^{\ell} e \bowtie 0$ do s done $\rrbracket t \stackrel{\text { def }}{=}$ Ifp $^{\#} \bar{F}_{M}^{\#}$ where $\bar{F}_{M}^{\#}(x) \stackrel{\text { def }}{=} \operatorname{FILTER}_{A} \llbracket e \bowtie 0 \rrbracket\left(\mathscr{R}_{M}^{\#} \llbracket s \rrbracket x\right) \vee_{T}$ FILTER $_{A} \llbracket e \bowtie 0 \rrbracket(t)$

Lemma (Soundness)
$\mathscr{R}_{M} \llbracket$ while ${ }^{\ell} e \bowtie 0$ do s done $\rrbracket \gamma_{A}(t) \leqslant \gamma_{A}\left(\mathscr{R}_{M}^{\#} \llbracket\right.$ while ${ }^{\ell} e \bowtie 0$ do s done $\left.\rrbracket t\right)$
(see proof in [Urban15])

Abstract Definite Termination Semantics

For each program instruction stat, we define a transformer $\mathscr{R}_{M}^{\#} \llbracket$ stat $\rrbracket: \mathscr{A} \rightarrow \mathscr{A}$:

- $\mathscr{R}_{M}^{\#} \Pi^{\ell} X \leftarrow e \rrbracket t \stackrel{\text { def }}{=} \mathrm{ASSIG} \mathrm{N}_{A} \llbracket X \leftarrow e \rrbracket t$

$-X \in \mathbb{v}$ whed, numeric language

$$
\ell \in \mathcal{L} \text {, where } \mathbb{L} \text { is a finite set of }
$$

$$
\text { numeric expressions: } \mathcal{L} \text { is a finite set of program variables }
$$

$$
\text { random inpressions: } \bowtie \in\{=, \leq \ldots,
$$

- $\mathscr{R}_{M}^{\#} \llbracket i \mathbf{i f}^{\ell} e \bowtie 0$ then $s \rrbracket t \stackrel{\text { def }}{=}$

FILTER $_{A} \llbracket e \bowtie 0 \rrbracket\left(\mathscr{R}_{M}^{\#} \llbracket s \rrbracket t\right) \vee_{T}$ FILTER $_{A} \llbracket e \bowtie 0 \rrbracket t$

- $\mathscr{R}_{M}^{\#} \llbracket$ while ${ }^{\ell} e \bowtie 0$ do s done $\rrbracket t \stackrel{\text { def }}{=}$ lfp $^{\#} \bar{F}_{M}^{\#}$ where $\bar{F}_{M}^{\#}(x) \stackrel{\text { def }}{=} \operatorname{FILTER}_{A} \llbracket e \bowtie 0 \rrbracket\left(\mathscr{R}_{M}^{\#} \llbracket s \rrbracket x\right) \vee_{T}$ FILTER $_{A} \llbracket e \bowtie 0 \rrbracket(t)$
- $\mathscr{R}_{M}^{\#} \llbracket s_{1} ; s_{2} \rrbracket t \stackrel{\text { def }}{=} \mathscr{R}_{M}^{\#} \llbracket s_{1} \rrbracket\left(\mathscr{R}_{M}^{\#} \llbracket s_{2} \rrbracket t\right)$

Abstract Definite Termination Semantics

Definition

The abstract definite termination semantics $\mathscr{R}_{M}^{\#} \llbracket$ stat $^{\ell} \rrbracket \in \mathscr{A}$ of a program stat ${ }^{\ell}$ is:
$\mathscr{R}_{M}^{\#} \llbracket \operatorname{stat}^{\ell} \rrbracket \stackrel{\text { def }}{=} \mathscr{R}_{M}^{\#} \llbracket \operatorname{stat} \rrbracket\left(\right.$ LEAF $\left.: \lambda X_{1}, \ldots, X_{k} .0\right)$
where $\mathscr{R}_{M}^{\#} \llbracket$ stat $\rrbracket: \mathscr{A} \rightarrow \mathscr{A}$ is the abstract definite termination semantics of each program instruction stat

Theorem (Soundness)

$\mathscr{R}_{M} \llbracket \operatorname{stat}^{\ell} \rrbracket \leqslant \gamma_{A}\left(\mathscr{R}_{M}^{\#} \llbracket \operatorname{stat}^{\ell} \rrbracket\right)$

Corollary (Soundness)

A program stat ${ }^{\ell}$ must terminate for traces starting from a set of initial states \mathscr{F} if $\mathscr{I} \subseteq \operatorname{dom}\left(\gamma_{A}\left(\mathscr{R}_{M}^{\#} \llbracket \operatorname{stat}^{\ell} \rrbracket\right)\right)$

Abstract Definite Termination Semantics

Example

${ }^{1} \mathrm{x} \leftarrow[-\infty,+\infty]$
${ }^{2} \mathrm{y} \leftarrow[-\infty,+\infty]$
while ${ }^{3}(x>0)$ do
${ }^{4} \mathrm{x} \leftarrow \mathrm{x}-\mathrm{y}$
Od 5

Abstract Definite Termination Semantics

Example

${ }^{1} \mathrm{x} \leftarrow[-\infty,+\infty]$
${ }^{2} \mathrm{y} \leftarrow[-\infty,+\infty]$

Abstract Definite Termination Semantics

Example

Abstract Definite Termination Semantics

Example

${ }^{1} \mathrm{x} \leftarrow[-\infty,+\infty]$
${ }^{2} \mathrm{y} \leftarrow[-\infty,+\infty]$
while $3(x) 0$) do

FILTER $_{A} \llbracket x>0 \rrbracket$

Abstract Definite Termination Semantics

Example

Abstract Definite Termination Semantics

Example

Abstract Definite Termination Semantics

Example

Abstract Definite Termination Semantics

Example

$\begin{aligned} & { }^{1} \mathrm{x} \leftarrow[-\infty,+\infty] \\ & { }^{2} \mathrm{y} \leftarrow[-\infty,+\infty] \end{aligned}$
${ }^{4} \mathrm{x} \leftarrow \mathrm{x}-\mathrm{y}$

Abstract Definite Termination Semantics

Example

${ }^{1} \mathrm{x} \leftarrow[-\infty,+\infty]$
${ }^{2} \mathrm{y} \leftarrow[-\infty,+\infty]$
while $3(x>0)$ do
${ }^{4} x * x-y$
od ${ }^{5}$

Abstract Definite Termination Semantics

Example

${ }^{1} \mathrm{x} \leftarrow[-\infty,+\infty]$
${ }^{2} \mathrm{y} \leftarrow[-\infty,+\infty]$
while ${ }^{3}(x>0)$ do
${ }^{4} \mathrm{x} \leftarrow \mathrm{x}-\mathrm{y}$

od 5

Better Widening

Precise Widening Operators

Roberto Bagnara ${ }^{1}$, Patricia M. Hill ${ }^{2}$, Elisa Ricci ${ }^{1}$, and Enea Zaffanella ${ }^{1}$

Fig. 2. The heuristics h_{r} improving on the standard widening.

Better Widening

Precise Widening Operators
 for Convex Polyhedra^

Roberto Bagnara ${ }^{1}$, Patricia M. Hill ${ }^{2}$, Elisa Ricci ${ }^{1}$, and Enea Zaffanella ${ }^{1}$

Fig. 2. The heuristics h_{r} improving on the standard widening.

Better Widening

Maximal Trace Semantics Termination Semantics Piecewise-Defined Ranking Functions
Ordinal-Valued Ranking Functions

Example

$$
\begin{aligned}
& \text { int }: x, y \\
& \text { while }{ }^{1}(x>0) \text { do } \\
& \quad{ }^{2} x:=x-y \\
& \text { od }^{3}
\end{aligned}
$$

the analysis gives the weakest precondition $x \leq 0 \vee y>0$

NODE $\{x \leq 0\}$

LEAF: $1 \quad \operatorname{NODE}\{x-y \leq 0\}$

Ordinal-Valued Raking Functions

Need for Ordinals

Example

```
1
while 2(x>0) do
    { } ^ { 3 } \mathrm { x } \leftarrow \mathrm { x } - 1
Od4
```


Ordinals

Ordinal Arithmetic Addition

$$
\begin{aligned}
\alpha+0 & =\alpha & \text { (zero case) } \\
\alpha+\operatorname{succ}(\beta) & =\operatorname{succ}(\alpha+\beta) & \text { (successor case) } \\
\alpha+\beta & =\bigcup_{\gamma<\beta}(\alpha+\gamma) & \text { (limit case) }
\end{aligned}
$$

Properties

- associative

$$
\begin{array}{r}
(\alpha+\beta)+\gamma=\alpha+(\beta+\gamma) \\
1+\omega=\omega \neq \omega+1
\end{array}
$$

Ordinal Arithmetic Multiplication

$$
\begin{aligned}
\alpha \cdot 0 & =0 & \text { (zero case) } \\
\alpha \cdot \operatorname{succ}(\beta) & =(\alpha \cdot \beta)+\alpha & \text { (successor case) } \\
\alpha \cdot \beta & =\bigcup_{\gamma<\beta}(\alpha \cdot \gamma) & \text { (limit case) }
\end{aligned}
$$

Properties

- associative

$$
(\alpha \cdot \beta) \cdot \gamma=\alpha \cdot(\beta \cdot \gamma)
$$

- left distributive $\alpha \cdot(\beta+\gamma)=(\alpha \cdot \beta)+(\alpha \cdot \gamma)$
- not commutative

$$
2 \cdot \omega=\omega \neq \omega \cdot 2
$$

- not right distributive $(\omega+1) \cdot \omega=\omega \cdot \omega \neq \omega \cdot \omega+\omega$

Piecewise-Defined Ranking Functions Abstract Domain

Piecewise-Defined Ranking Functions Abstract Doxiliary Abstract Domain Linear Constraints Auxilian americal abstract domain $\left\langle\mathscr{D}, \sqsubseteq_{D}\right\rangle$

\mathscr{C} is a set of linear constraints . in canonical form,
$\mathscr{C}^{\text {def }} \xlongequal[=]{=}\left\{c_{1} \cdot X_{1}+c_{k} \cdot X_{k}+c_{k+1} \geq 0 \mid X_{1}, \ldots, X_{k} \in \mathbb{V}\right.$
$\left.\left.\operatorname{gcd}\left|c_{1}\right|, \ldots,\left|c_{k}\right|\right)=1\right\}$
Termination Analysis

Functions Abstract Doming Functions Auxiliary Abstract Domain

- Parameterized by an underlying numerical abstract
- $\mathscr{F} \stackrel{\text { def }}{=}\left\{\perp_{F}\right\} \cup\left(\mathbb{Z}^{|M|} \rightarrow \mathbb{N}\right) \cup\{$ underlying numerical abstract domain We consider affine functions:
$\mathscr{F}_{A} \stackrel{\text { def }}{=}\left\{\perp_{F}\right\} \cup\{f: \mathbb{T}|\mathbb{M}| \quad x-6 \geq 0$
$f\left(X_{1}, \ldots, X_{k}\right)=\sum_{i=1}^{k} m_{i} \cdot X_{i}+q$
$\} \cup\left\{T_{F}\right\}$

Piecewise-Defined Ranking Functions Abstract Domain
 Ordinal-Valued Functions Auxiliary Domain

- Parameterized by the underlying functions auxiliary domain $\left\langle\mathscr{F}, \sqsubseteq_{F}\right\rangle$
- $\mathscr{W} \stackrel{\text { def }}{=}\left\{\perp_{W}\right\} \cup\{$

Piecewise-Defined Ranking Functions Abstract Domain

Ordinal-Valued Functions Auxiliary Domain (continue)

Piecewise-Defined Ranking Functions Abstract Domain
Functions Auxiliary Abstract Domain (continue)

- approximation order $\preccurlyeq_{F}[D]$, where $D \in \mathscr{D}$:
- between defined leaf nodes:

$$
f_{1} \preccurlyeq_{F}[D] f_{2} \stackrel{\text { def }}{=} \forall \rho \in \gamma_{D}(D): f_{1}\left(\ldots, \rho\left(X_{i}\right), \ldots\right) \leq f_{2}\left(\ldots, \rho\left(X_{i}\right), \ldots\right)
$$

- otherwise (i.e., when one or both leaf nodes are undefined):

Piecewise-Defined Ranking Functions Abstract Domain Functions Auxiliary Abstract Domain (continue) - computational order $\sqsubseteq_{F}[D]$, where $D \in \mathscr{D}$:

- between defined leaf nodes:
 - otherwise (i.e., when one or both leaf nodes are undefined):

Piecewise-Defined Ranking Functions Abstract Domain

Ordinal-Valued Functions Auxiliary Domain (continue)

- approximation order $\preccurlyeq_{W}[D]$, where $D \in \mathscr{D}$:
- between defined leaf nodes:
$\sum_{i} \omega^{i} \cdot f_{i_{1}} \preccurlyeq_{W}[D] \sum_{i} \omega^{i} \cdot f_{i_{2}} \stackrel{\text { def }}{=} \forall \rho \in \gamma_{D}(D): \sum_{i} \omega^{i} \cdot f_{i_{1}}\left(\ldots \rho\left(X_{i}\right) \ldots\right) \leq \sum_{i} \omega^{i} \cdot f_{i_{2}}\left(\ldots \rho\left(X_{i}\right) \ldots\right)$
- otherwise (i.e., when one or both leaf nodes are undefined):

Piecewise-Defined Ranking Functions Abstract Domain

Ordinal-Valued Functions Auxiliary Domain (continue)

- computational order $\sqsubseteq_{W}[D]$, where $D \in \mathscr{D}$:
- between defined leaf nodes:

$$
\sum_{i} \omega^{i} \cdot f_{i_{1}} \sqsubseteq_{W}[D] \sum_{i} \omega^{i} \cdot f_{i_{2}} \stackrel{\text { def }}{=} \forall \rho \in \gamma_{D}(D): \sum_{i} \omega^{i} \cdot f_{i_{1}}\left(\ldots \rho\left(X_{i}\right) \ldots\right) \leq \sum_{i} \omega^{i} \cdot f_{i_{2}}\left(\ldots \rho\left(X_{i}\right) \ldots\right)
$$

- otherwise (i.e., when one or both leaf nodes are undefined):

Piecewise-Defined Functions Abstrac

Piecewise-Defined Ranking

 Functions Abstract Domaing

- A def

$\{$ LEAF: $f \mid f \in \mathscr{W}\} \cup\{$ NOD

- concretization function $\gamma_{A}: \mathscr{A} \rightarrow(\mathscr{E}$

$$
\gamma_{A}(t) \stackrel{\text { def }}{=} \bar{\gamma}_{A}[\varnothing](t)
$$

$$
\text { where } \bar{\gamma}_{A}: \mathscr{P}\left(\mathscr{C} / \equiv_{C}\right) \rightarrow \mathscr{A} \rightarrow(\mathscr{E} \rightharpoonup \mathbb{O}) \text { : }
$$

$$
\bar{\gamma}_{A}[C](\text { LEAF }: f) \stackrel{\text { def }}{=} \gamma_{F}\left[\alpha_{C}(C)\right](f)
$$

$$
\bar{\gamma}_{A}[C]\left(\operatorname{NODE}\{c\}: t_{1} ; t_{2}\right) \stackrel{\text { def }}{=} \bar{\gamma}_{A}[C \cup\{c\}]\left(t_{1}\right) \cup \dot{\gamma_{A}}[C \cup\{\neg c\}]\left(t_{2}\right)
$$

$$
\text { and } \gamma_{F}: \mathscr{D} \rightarrow \mathscr{W} \rightarrow(\mathscr{E} \rightharpoonup \mathbb{O}) \text { : }
$$

$$
\gamma_{F}[D]\left(\perp_{F}\right) \stackrel{\text { def }}{=} \dot{\varnothing}
$$

$$
\begin{aligned}
& \gamma_{F}[D]\left(\perp_{F}\right)=\varnothing \\
& \left.\gamma_{F}[D]\left(\sum_{i}^{i} \omega^{i} \cdot f_{i}\right) \stackrel{\text { def }}{=} \lambda \rho \in \gamma_{D}(D): \sum_{i} \omega^{i} \cdot f_{i}\left(\ldots, \rho\left(X_{i}\right), \ldots\right)\right) .
\end{aligned}
$$

$$
\gamma_{F}[D]\left(\overline{T_{F}}\right) \stackrel{\text { def }}{=} \dot{\varnothing}
$$

Piecewise-Defined Ranking Functions Abstract Domain Abstract Domain Operators

- They manipulate elements in $\mathscr{A}_{\text {NIL }} \stackrel{\text { def }}{=}\{$ NIL $\} \cup \mathscr{A}$
- The binary operators rely on a tree unification algorithm
- approximation order \preccurlyeq_{A} and computational order \sqsubseteq_{A}
- approximation join \vee_{A} and computational join \sqcup_{A}
- meet $\boldsymbol{\lambda}_{A}$
- widening ∇_{A}
- The unary operators rely on a tree pruning algorithm
- assignment ASSIG $N_{A} \llbracket X \leftarrow e \rrbracket$
- test FILTER A 【 $e \rrbracket$

Piecewise-Defined Ranking Functions Abstract Domain Join

Piecewise-Defined Ranking Functions Abstract Domain

 Join1. Perform tree unification
2. Recursively descend the trees while accumulating the linear constra encountered along the paths into a set of constraints C
3. $\mathrm{NIL} \vee_{A} t \stackrel{\text { def }}{=} t$ $t \mathrm{~V}_{A}$ NIL $\stackrel{\text { def }}{=} t$
4. Join the leaf nodes using the approximation join $\vee_{F}\left[\alpha_{C}(C)\right]$ or the computational join $\sqcup_{F}\left[\alpha_{C}(C)\right]$

Piecewise-Defined Ranking Functions-Defined Ranking
Join (continue)
apporoximation

Example:

otherwise
otherwise
$\max \left(f_{1}(\ldots\right.$

Termination Analysis

Piecewise-Defined Ranking Functions Abstract Domain Join (continue)

- approximation join $\vee_{W}[D]$, where $D \in \mathscr{D}$:
- between defined leaf nodes:
approximation join $\curlyvee_{F}[D]$ in ascending powers of ω
Example:

$$
\begin{array}{ccccc}
f_{1} & \equiv \omega^{2} \cdot x_{1} & +\omega \cdot x_{2}+3 \\
f_{2} & \equiv & \omega^{2} \cdot x_{1} & +\omega \cdot\left(-x_{2}\right) & +4 \\
f_{1} \vee_{W}\left[T_{D}\right] f_{2} & \equiv \omega^{2} \cdot\left(x_{1}+1\right) & +\omega \cdot 0 & +4
\end{array}
$$

Piecewise-Defined Ranking Functions Abstract Domain Join (continue)

- approximation join $\vee_{W}[D]$, where $D \in \mathscr{D}$:
- between defined leaf nodes:
approximation join $\bigvee_{F}[D]$ in ascending powers of ω
- otherwise (i.e., when one or both leaf nodes are undefined):

$$
\begin{array}{ll}
\perp_{W} \vee_{W}[D] f \stackrel{\text { def }}{=} \perp_{W} & f \in \mathscr{W} \backslash\left\{\top_{W}\right\} \\
f \vee_{W}[D] \perp_{W} \stackrel{\text { def }}{=} \perp_{W} & f \in \mathscr{W} \backslash\left\{\mathrm{~T}_{W}\right\} \\
\mathrm{T}_{W} \vee_{W}[D] f \stackrel{\text { def }}{=} \mathrm{T}_{W} & f \in \mathscr{W} \backslash\left\{\perp_{W}\right\} \\
f \vee_{W}[D] \mathrm{T}_{W} \stackrel{\text { def }}{=} \mathrm{T}_{W} & f \in \mathscr{W} \backslash\left\{\perp_{W}\right\}
\end{array}
$$

Piecewise-Defined Ranking Functions Abstract Domain Join (continue)

- computational join $\sqcup_{W}[D]$, where $D \in \mathscr{D}$:
- between defined leaf nodes:
computational join $\sqcup_{W}[D]$ in ascending powers of ω
- otherwise (i.e., when one or both leaf nodes are undefined):

$$
\begin{array}{cc}
\perp_{W} \sqcup_{W}[D] f \stackrel{\text { def }}{=} f & f \in \mathscr{W} \\
f \sqcup_{W}[D] \perp_{W} \stackrel{ }{=} \stackrel{f \in \mathscr{W}}{=} f & f \in \mathscr{V} \\
\top_{W} \sqcup_{W}[D] f \stackrel{\text { def }}{=} \top_{W} & f \in \mathscr{W} \\
f \sqcup_{W}[D] \top_{W} \stackrel{ }{=}=\top_{W} & f \in \mathscr{W}
\end{array}
$$

$$
f: \mathbb{Z}^{|\mathbb{V}|} \rightarrow \mathbb{O}
$$

\perp_{W}

Piecewise-Defined Ranking Functions Abstract Domain

Widening

Piecewise-Defined Ranking Functions Abstract Domain

1. Check for case \mathbf{A} (i.e., wrong domain predictions)
2. Perform domain widening
3. Check for case \mathbf{B} or \mathbf{C} (i.e., wrong value predictions)
4. Perform value widening

Piecewise-Defined Ranking Functions Abstract Domain

Widening (continue)
Value Widening

1. Recursively descend the trees while accumulating the linear constraints encountered along the paths into a set of constraints C
2. Widen each (defined) leaf node f with respect to each of their adjacent (defined) leaf node \bar{f} using the extrapolation operator
$\nabla_{F}\left[\alpha_{C}(\bar{C}), \alpha_{C}(C)\right]$, where \bar{C} is the set of constraints along the path to \bar{f}
Example:

Piecewise-Defined Ranking Functions Abstract Domain

 Widening (continue)1. Recursively descend the trees while accumulating the linear constraints encountered along the paths into a set of constraints C
2. Widen each (defined) leaf node f with respect to each of their adjacent (defined) leaf node \bar{f} using the extrapolation operator $\nabla_{F}\left[\alpha_{C}(\bar{C}), \alpha_{C}(C)\right]$, where \bar{C} is the set of constraints along the path to \bar{f}, in ascending powers of ω

$$
\text { yield } \mathrm{T}_{W} \text { when the extrapolation of natural-valued functions yields } \mathrm{T}_{F}
$$

Piecewise-Defined Ranking Functions Abstract Domain

Assignments

Piecewise-Defined Ranking Functions Abstract Domain
Assignments

Piecewise-Defined Ranking Functions Abstract Domain
Assignments
$A S S I G N_{A} \llbracket X \leftarrow e \rrbracket$

Convert $\mathrm{ASSIG}_{D} \llbracket X \leftarrow e \rrbracket\left(\alpha_{C}(\{c\})\right.$ and
$\left.\mathrm{ASSIGN}_{D} \llbracket X \leftarrow e \rrbracket\right]\left(\alpha_{C}(\{\neg c\})\right.$
into sets I and J of linear constraints in canonical form

case (4)

1. perform tree pruning on \square and

2. join the results with \vee_{A}

Piecewise-Defined Ranking Functions Abstract Domain

 Assignments (continue)- Base case (\square
Apply AS $\overleftarrow{S I G} \mathrm{~N}_{F}\left[X X \leftarrow e \rrbracket\left[\alpha_{C}(C)\right]\right.$ on the defined leaf nodes in ascending powers of ω

Example:

Abstract Definite Termination Semantics

Abstract Definite Termination Semantics

For each program instruction stat, we define For each program instruction
a transformer $\mathscr{R}_{M}^{\prime} \llbracket$ stat $\rrbracket: \mathscr{A} \rightarrow \mathcal{A}:$

- $\mathscr{R}_{M}^{\#} \mathbb{I I}^{t} X<e \| \rrbracket \stackrel{\text { def }}{=} A \overleftarrow{S S I G} N_{A} I \mathbb{X}<e \mathbb{I}$

| $\left.{ }^{c}, c^{\prime}\right]$

Simple structured, numeric language
$=X \in V$, where V is a finte set of program variables
$=\ell \in \mathcal{L}$, where \mathcal{L} is a finite set of control points
$=$ numeric expressions: $\ltimes \in\{=, \leq, \ldots\}, \Delta \in\{+,-, x, /$

 where $\bar{F}_{M}^{\#}(x)$ - $\mathscr{R}_{M}^{\#} \llbracket s_{1} ; s_{2} \rrbracket t \stackrel{\text { def }}{=} \mathscr{R}_{M}^{\#} \llbracket s_{1} \rrbracket\left(\mathscr{R}_{M}^{\#} \llbracket s_{2} \rrbracket t\right)$

Termination Analysis

Abstract Definite Termination Seme Semantics
The abstract definite termination
of a program stat ${ }^{\circ}$ is:
$\mathscr{R}_{M}^{\#} \|$ stat ${ }^{e}\left\|\stackrel{\text { def }}{=} \mathscr{R}_{M}^{\#}\right\|$ stat $\|\left(L E A F: \lambda X_{1}, \ldots, X_{k} \cdot 0\right)$
where $\mathscr{R}_{M}^{\#} \|$ stat $\|: \mathscr{A} \rightarrow \mathscr{A}$ is the abstract definite termination semantics
of each program instruction stat
Theorem (Soundness)
$\mathscr{R}_{M} \|$ stat $\|$
A program stat ℓ Corollary (Soundness)
traces starting from terminate for
\mathscr{I} if $\mathscr{I} \subset$ starting from a set of inite for
\mathscr{F} if $\mathscr{F} \subseteq \operatorname{dom}\left(\gamma_{A}\left(\mathscr{R}_{H}^{\#} \|\right.\right.$ stat in initial states
Termination Analysis

Abstract Definite Termination Semantics

Example

```
\({ }^{1} \times 1 \leftarrow[-\infty,+\infty]\)
\({ }^{2} \times 2 \leftarrow[-\infty,+\infty]\)
    while \({ }^{3}(x 1>0 \wedge x 2>0)\) do
    \({ }^{4} \mathrm{~b} \leftarrow[-\infty,+\infty]\)
    if \(5(b \geq 0)\) then
        \({ }^{6} \mathrm{x} 1 \leftarrow \mathrm{x} 1-1\)
        \({ }^{7} x 2 \leftarrow[-\infty,+\infty]\)
    else
        \({ }^{8} \mathrm{x} 2 \leftarrow \mathrm{x} 2-1\)
od \({ }^{9}\)
```

$$
f_{3} \stackrel{\text { def }}{=} \begin{cases}1 & x_{1} \leq 0 \vee x_{2} \leq 0 \\ \omega \cdot\left(x_{1}-7\right)+7 x_{1}+3 x_{2}-5 & x_{1}>0 \wedge x_{2}>0\end{cases}
$$

Abstract Interpretation Recipe

practical tools

targeting specific programs
algorithmic approaches
mathematical models
of the program behavior

Abstract Interpretation Recipe

practical tools

targeting specific programs
algorithmic approaches
to decide program properties
mathematical models
of the program behavior

Bibliography

[Cousot02] Patrick Cousot. Constructive Design of a Hierarchy of Semantics of a Transition System by Abstract Interpretation. In Theoretical Computer Science 277(1-2):47-103, 2002.
[Cousot12] Patrick Cousot and Radhia Cousot. An Abstract Interpretation Framework for Termination. In POPL, pages 245-258, 2012.
[Urban15] Caterina Urban. Static Analysis by Abstract Interpretation of Functional Temporal Properties of Programs. PhD Thesis, École Normale Supérieure, 2015.
[Urban17] Nathanaël Courant and Caterina Urban. Precise Widening Operators for Proving Termination by Abstract Interpretation. In TACAS, 2017.
extensions with other widening heuristics

