
Exam

December, 2nd, 2015

1 Part I: Exercise (congruences abstraction)

Consider the following function over PpZq:

F : PpZq ÝÑ PpZq
X ÞÝÑ t1u Y tx` 4 | x P X ^ x ă 10u Y tx´ 4 | x P X ^ x ă 10u

Y tx` 2 | x P X ^ x ě 10u

1. Explain why F has a least fixpoint. Show how it can be computed. Give this least-fixpoint (give
the result, and prove it is indeed the lfp).

2. We consider the congruence domain. Recall its definition (abstract elements and concretization
function).

3. Explain why F has a best over-approximation F 7 in the congruence domain lattice, and provide
its definition.

4. What about the least-fixpoint of F 7 ? Show the corresponding computation in the abstract.

2 Part II: Problem (object sensitive abstraction)

In this problem, we study context sensitive and object sensitive static analyses of languages with
procedures and (a very modest model of) objects.

In this problem, we focus on the values that can be observed for object fields, and do not consider
very carefully object updates (although that would be a logical follow up to the work proposed in this
problem): due to this, and to keep definitions more concise, we will consider a very simplified language
(but sufficient for our purpose).

Syntax. We consider a basic imperative language with procedures (a procedure has no return value,
and has a single argument —except for main which has none), and with dynamically allocated records
(that model objects). Each record has exactly two fields named a,b. A condition c is an implication

1

between comparisons of the value of a record field and a constant.

’ P t“,ă,ąu comparison operators
v P Z values

x, y, z, t, . . . P X variables
i P ta,bu fields

f0, f1, . . . P L control states of function f

c ::“ x ¨ i ’ v ñ x ¨ i ’ v conditions (for assertions)
s ::“ x “ newpv, vq creation of an object and initialization

| x “ y variable assignment
| ifp?qgoto fk non deterministic branching to fk
| goto fk deterministic branching to fk
| fpxq call of a procedure
| assertpcq assertion

f ::“ fun fpxqtf0 : s; f1 : s; . . . ; fks; fk`1 : lu a procedure with a single parameter
p ::“ pf, . . . , fq a set of procedures including a main

The body b of a procedure f consists of a sequence of statements, and we write fn for the control state
located right before the n-th statement (after the pn´ 1q-th). A statement is either the allocation of
a new record, a branching (conditional or not), a (possibly recursive) procedure call or an assertion.
Each procedure has a single argument and a body. A program comprises a set of procedures including
a main (in the following we always consider it has no argument —though we do not reflect this in the
above grammar).

Semantics. A state is either defined by a stack of pairs made of a control state and a local environ-
ment, or an error state:

σ pP Sq
σ ::“ pι, µq ¨ . . . ¨ pι, µq call stack, with current call at the left

| Ω error state
µ P M “ X ÝÑ Z2 memory state, maps each value to a pair of integers
ι ::“ fk control state

The semantics JcK : SÑ B (where B “ ttrue, falseu) of condition c is a function that returns the
boolean value of c in a state (these semantics are trivial and not given here). The initial configuration
is σi “ pmain0, εq, where ε denotes the function with empty domain (entry point of function main, with
empty store). We let Si “ tσiu. The transition relation is defined in the table below:

instruction transition
fk : x “ newpva, vbq pfk, µq ¨ σ Ñ pfk`1, µrx ÞÑ pva, vbqsq ¨ σ

fk : x “ y pfk, µq ¨ σ Ñ pfk`1, µrx ÞÑ µpyqsq ¨ σ

fk : ifp?qgoto fl pfk, µq ¨ σ Ñ pfk`1, µq ¨ σ

fk : ifp?qgoto fl pfk, µq ¨ σ Ñ pfl, µq ¨ σ

fk : goto fl pfk, µq ¨ σ Ñ pfl, µq ¨ σ

fk : gpxq pfk, µq ¨ σ Ñ pg0, tt ÞÑ µpxquq ¨ pfk, µq ¨ σ where t is the parameter of g
fk : assertpcq pfk, µq ¨ σ Ñ pfk`1, µq ¨ σ if JcKpµq “ true
fk : assertpcq pfk, µq ¨ σ Ñ Ω if JcKpµq “ false

fk : l pfk, µgq ¨ pgl, µf q ¨ σ Ñ pgl`1, µf q ¨ σ

We will consider the reachable states semantics defined by:

JpK “ tσ | Dσ0 P Si, σ0 Ñ‹ σu “ lfpF

where F : SÑ S is such that F pSq “ Si Y tσ1 | Dσ P S, σ Ñ σ1u.

2

fun fpxqt

f0 : assertpx ¨ a ă 0 ñ x ¨ b ą 0q;
f1 : l

u

fun mainpqt

main0 : y “ newp1,´2q;
main1 : z “ newp´1, 4q;
main2 : fpyq;
main3 : fpzq;
main4 : l

u

(a) Example 1

fun fpxqt

f0 : t “ x;
f1 : ifp?qgoto f5;
f2 : ifp?qgoto f6;
f3 : assertpx ¨ a ă 0 ñ x ¨ b ą 0q;
f4 : goto f7;
f5 : t “ newp2,´4q;
f6 : fptq;
f7 : l

u

fun mainpqt

main0 : y “ newp1,´2q;
main1 : z “ newp´1, 4q;
main2 : fpyq;
main3 : fpzq;
main4 : l

u

(b) Example 2

Figure 1: A couple of examples

Question 1 Executions.
Give a maximal execution trace for Example 1. Comment on the assertion in f.

Question 2 Executions.
Comment on the assertion in f in example 2. (as this example is larger, we do not ask to write down
any execution trace, but you may do it if that helps your intuition).

Context sensitive analyses. We first consider several context sensitive analyses as considered in the
lecture. In the following, we deliberately assume a very simple, non relational numerical abstraction,
where each field is abstracted by its sign (we use the lattice of signs, where K represents the empty
set, J any set of integers, r`s represents any set of strictly positive integers and r´s any set of strictly
negative integers; we write Sign7 for this abstract lattice and αSigns, γSigns for its abstraction and
concretization functions).

Question 3 Sign abstraction.
Give the abstract ordering on Sign7, the definition of the αSigns and γSigns functions, and show that
it defines a Galois connection.

For concision, if psa, sbq P pSign7q2, we also write γSignspsa, sbq for tpva, vbq | va P γSignspsaq ^ vb P
γSignspsbqu.

We define the following abstract domain and concretization functions:

M7 “ XÑ pSign7q2

S7 “ LÑM7

γM : M7 ÝÑ PpMq
M 7 ÞÝÑ tµ PM | @x, µpxq P γSignspM

7pιiqpxqqu
γS : S7 ÝÑ PpSq

S7 ÞÝÑ tpι0, µ0q ¨ . . . ¨ pιn, µnq | @i, µi P γMpS
7pιiqqu

3

Question 4 Non context sensitive analysis (0-CFA).
Show it is possible to define an abstraction function so as to form a Galois connection.
Show the best abstractions of the sets of reachable states for both examples, at point f0. Can an
analysis based on this abstraction verify that both programs are correct (i.e., that the assertion is
never violated).

Before we discuss improvements of this analysis, we propose to formalize partially the computation
of abstract invariants.

Question 5 Static analysis.
We write δ7ι,ι1 : M7 Ñ M7 for the abstraction of the transition relation, which meets the soundness
condition below and should be as precise as possible:

@M 7 PM7,@ppι, µq ¨ σq, ppι1, µ1q ¨ σ1q P S,
pι, µq ¨ σ Ñ pι1, µ1q ¨ σ1

^ µ P γMpM
7q

*

ùñ µ1 P γMpδ
7

ι,ι1pM
7qq

Define all δ7ι,ι1 when ι is the control state of one of the following statements:
• x “ newpv, vq
• x “ y

• ifp?qgoto fk
• fpxq

• l (end of a function)
Comment on the precision of the later, and its effect on the analysis.

The imprecision observed in the previous question is not acceptable. Therefore, we propose to address
it. Given a program p, we define a second transition relation , which is defined just like Ñ except
for the following cases:

instruction transition
fk : gpxq pfk, µq ¨ σ pg0, tt ÞÑ µpxquq ¨ pfk, µq ¨ σ where t is the parameter of g

pfk, µq ¨ σ pfk`1, µq ¨ σ

fk : l defines no transition

Note that a call now defines two transitions.

Question 6 Improving the analysis of procedure call / procedure return.
Describe informally the effect of this change. Compare JpK with the set of states that are reachable
from σi, and using (compare sets tσ | σi Ñ‹ σu and tσ | σi ‹ σu, and explain how to prove this
property —the proof may be long, thus it is fine to only provide the skeleton of the proof). Deduce a
way to derive precise abstract information after a procedure return, from information at the call site.

Question 7 Definition of the static analysis.
Describe how we can obtain an abstract join operator.
Define how the abstract semantics can be computed. Show its soundness and its termination.

Context sensitive analyses refine the abstraction using calling contexts: for instance 1-CFA will
discriminate states depending on the call-site of the current procedure, whereas k-CFA discriminates
them according to the k ongoing procedure calls on top of the call stack.

4

Question 8 Partially context sensitive analysis (k-CFA).
Define the abstract domain that would be used by a 1-CFA analysis.
How do the analysis transfer functions need be updated ?
Explain whether it allows to analyze successfully (i.e., compute invariants that are precise enough to
establish none of the assertions will be violated) example 1 and example 2. In case one of the examples
cannot be analyzed successfully with 1-CFA, would a k-CFA work ? (if so, indicate for which k).

Object sensitive abstraction. We observe that in both examples, the properties of the records
can be fully determined by the site at which their values where first set (main0, main1 in example 1).
Thus we propose to drop any context sensivity, but to use object sensitivity, where each record will be
related to its creation site in the abstract level. For example, in example 1 and at the entry of f0:
• if the record pointed to by x was created at point main0, its contents can be abstracted by
pr`s, r´sq;
• if it was created at point main1, its contents can be abstracted by pr´s, r`sq.

In both cases, the information allows to show the condition of the assertion is satisfied.

Question 9 Example 2.
Show intuitively that this approach can also cope with example 2, and give the number of cases that
need be considered during the analysis.

Before we can formalize this abstraction, we need to actually extend the concrete semantics, so that,
for each state, each record also contains the information about the point at which it was created. For
this, we need to extend the definition of µ into:

µ P XÑ Lˆ Zˆ Z

Now, µpxq “ pι, va, vbq means that x stores pair pva, vbq and that this pair was created at control state
ι or copied from a pair created at control state ι (possibly indirectly, as this may be the result of a
chain of copies).

Only one of the rules in the definition of the transition relation needs to be changed:

instruction transition
fk : x “ newpva, vbq pfk, µq ¨ σ Ñ pfk`1, µrx ÞÑ pfk, va, vbqsq ¨ σ

...
...

Question 10 Formalize the abstract domain.
Define the abstract domain for object sensitive analysis that allows to treat the above example, and
give the corresponding concretization function (as shown in the example in the beginning of this part,
the object sensitive abstraction should abstract separately pairs that stem from distinct allocation
sites).

Question 11 Static analysis.
Describe the changes to the abstract semantics defined in question 5.

Question 12 Advantages of the object sensitive approach.
Informally explain when the object sensitive abstraction is appropriate and when it is unlikely to give
better precision (beyond the language studied in this problem).

5

