Ensuring Application Continuity with Fault
Tolerance Techniques

Rafaela Brum, Luan Teylo, Luciana Arantes, and Pierre Sens

Abstract A cloud is an attractive environment for executing high-performance (HPC)
applications. There is an extensive and consolidated history of long-running HPC
applications that were deployed on clouds or successfully migrated from clusters to
clouds not only because the latter provides flexibility and access to virtually infinite
resources but also because clouds are offered to users as failure-free platforms.
However, outages are not uncommon in clouds and, in this case, the cloud provider
and/or HPC applications need to implement fault tolerance mechanisms in order to
ensure reliability and the correct execution of the applications. In this chapter, we
present an overview of the related literature about fault tolerance (FT) techniques
most used by clouds and HPC applications that run on them, basically checkpoint-
rollback and replication, as well as fault detection approaches and existing reliable
storage in clouds.

1 Introduction

A cloud environment is a distributed system composed of hundreds to millions
of components. With such a scale, the probability of failures is extremely high
and, therefore, failures become the norm and not the exception [97]. In general,
public providers like Google and Amazon offer guarantees of high availability for
their services but they are not 100% failure safe. For instance, in 2017, during
an operational check-in on AWS, a typo in one of the commands executed by the

Rafaela Brum
Fluminense Federal University, Niter6i, Brazil e-mail: rafaclabrum @id.uff.br

Luan Teylo
Inria Bordeaux Sud Ouest, Bordeaux, France e-mail: luan.gouveia-lima@inria.fr

Luciana Arantes, Pierre Sens
Sorbonne Université, CNRS, Inria, LIP6, Paris, France e-mail: {luciana.arantes,
pierre.sens } @lip6.fr

2 Rafaela Brum, Luan Teylo, Luciana Arantes, and Pierre Sens

technicians took down a great number of servers, affecting the S3 service. Suddenly,
numerous services on the internet, including services offered by big players, like
Quora and Spotify, started to report crashes. Millions of users could not use the
services in question during the four hours needed to solve the problem [57]. Another
recent incident happened in December 2020, when the N. Virginia region (us-east-
1) of AWS EC2 faced a significant outage that took down lots of sites on the
internet, rendering unavailable services that were primordial for the functionality
of autonomous vacuum cleaners and doorbells [25]. Other public cloud providers,
such as Microsoft Azure and Google Cloud, also had to cope with failures in the last
years [4].

Therefore, the probability that failures have an impact on cloud and user appli-
cations is extremely high. In particular, in HPC applications, usually composed of
long-running tasks whose execution can stand for days or even months, failures can
have strong negative consequences on the correct execution of the application and
even work loss. Therefore, it is fundamental to know which failure tolerance level a
given HPC application requires and which is the ideal fault-tolerance technique to
achieve it.

Beyond failures, a client or application tasks can suffer from interruptions related
to the execution model of a cloud service. In this case, the provider does not offer full
guarantees in terms of reliability and might revoke the service. The most well-known
example of such services is the preemptible or spot VMs offered by the majority of
cloud providers [32]. Such VMs have economic advantages but can be revoked at any
time, contrary to on-demand VMs. The former can have prices up to 90% below the
latter. One can argue that such revocations are not failures since they are not generated
by unexpected behavior or bad functionality. However, fault tolerance techniques are
mandatory for ensuring reliability of such services, otherwise applications will not
work correctly. Hence, in this chapter, we also consider service revocation as a
type of failure and discuss how FT techniques can be used to extract the maximum
economic advantages of this execution model also guaranteeing the correct execution
of applications.

HPC applications are typically executed in the cloud using the Infrastructure as
a Service (IaaS) model where computational resources, such as storage, comput-
ing, and network, are offered as virtual machines (VMs) and on a pay-as-you-go
basis [52]. Hence, in order to execute an application, the user requests a set of VMs,
sets up the execution environment, and launches the application. At the end of the
execution, the total monetary cost is computed based on the execution time and the
VMs’ costs. Nevertheless, one or more VMs can be interrupted due to failures or
revocation, stopping the user’s application and increasing the execution time and,
in some cases, the monetary cost. Fault tolerance mechanisms play, thus, two fun-
damental roles: they ensure that the applications finish correctly and avoid high
monetary cost increases.

In this chapter, we consider the two main types of faults: crash and resource revo-
cation. In the context of clouds, a crash happens when a resource stops unexpectedly.
For instance, when an on-demand VM stops working before the client releases it. On
the other hand, a revocation happens when a resource, such as spot or preemptible

Ensuring Application Continuity with Fault Tolerance Techniques 3

VM, is intentionally stopped by the provider. In both cases, the most common tech-
niques used to tolerate them are checkpoint-rollback and replication. Therefore, we
present an overview of solutions of the related literature that provides fault tolerance
for HPC applications in cloud environments based on these two techniques. We also
discuss some works in fault detection and different existing cloud reliable storage.

The remainder of the chapter is organized as follows. The next section sum-
marizes fault tolerance techniques in distributed systems, focusing mainly on fault
detection, checkpoint, and replication. Section 3 discusses the implementation of
these techniques in clouds and the different approaches available in the related lit-
erature. Section 4, concludes the chapter and discusses some future directions and
challenges.

2 Fault Tolerance

This section presents some fault-tolerant concepts and mechanisms existing in dis-
tributed systems. Section 2.1 discusses the concept of failure detection, a step before
using the fault tolerance techniques while Section 2.2 and Section 2.3 respectively
present the checkpoint/ recovery and replication techniques. Section 2.4 present
some MPI projects and approaches that provide fault tolerance while Section 2.5
discusses some issues on applying fault tolerance mechanisms on HPC applications.

2.1 Failure Detection

A classic approach for tolerating failures in distributed systems is the detection and
then the recovery of them. The failure detection phase is essential in reducing system
unavailability, playing, thus, a central role in the engineering of such systems.

Proposed by Chandra and Toueg [21], unreliable failure detectors (FDs) can be
seen as oracles which provide information on task crashes. They usually output a list
of tasks suspected of having crashed. The information is unreliable in the sense that
correct tasks might be falsely suspected of having crashed, and faulty tasks might
still be trusted after they crashed. If an FD detects its mistake later, it corrects it. For
instance, an FD can stop suspecting at time t + 1, a task that it suspected at time t.
Unreliable failure detectors are usually characterized by two properties: completeness
and accuracy, as defined by Chandra and Toueg [21]. Completeness characterizes the
failure detector’s capability of suspecting faulty tasks, while accuracy characterizes
the failure detector’s capability of not suspecting correct tasks, i.e., restricts the
mistakes that the failure detector can make. Two kinds of completeness and four
kinds of accuracy are defined by Chandra and Toueg [21], which once combined
yield eight classes of failure detectors.

Numerous failure detector implementations and classes have been proposed in
the literature based on Chandra and Toueg’s seminal work. They usually differ

4 Rafaela Brum, Luan Teylo, Luciana Arantes, and Pierre Sens

in the system assumptions such as type of node (identifiable, anonymous [10],
homonymous [7]), type of link [1, 2, 47] (lossy asynchronous, reliable, timely,
eventually timely, etc.), behavior properties [1, 54]; type of network (static [9, 47],
dynamic [6, 35]), etc.

Regarding implementation, unreliable FDs usually exploit either a timer-based or
a message-pattern approach. In the first one, FD implementations make use of timers
to detect failures in tasks. Two mechanisms can be used to implement the timer-based
strategy: heartbeat and pinging. In the heartbeat [23], every task ¢ periodically sends
an "I am alive" message to task p that is responsible for monitoring g. If p does
not receive such a message from ¢ after the expiration of a timer, it adds g to its
list of suspected tasks. If p later receives an "I am alive" message from ¢, p then
removes g from its list of suspected tasks. In the pinging mechanism [26, 100],
every task p periodically sends a query message "Are you alive?" to the other tasks.
Upon reception of such a message, a task ¢ replies with an "I am alive" message.
The heartbeat strategy has advantages over pinging since the former sends half of
the messages than the latter for providing the same detection quality. Furthermore,
a heartbeat detector estimates only the transmission delay of "I am alive" messages,
whereas the pinging detector must estimate the transmission delay of "Are you alive?"
messages, the reaction delay, and the transmission delay of "I am alive" messages.

The message-pattern strategy does not use any timeout mechanism. In Mostefaoui
et al. [54], the authors propose an implementation that exploits such a strategy. A task
p sends a QUERY message to n nodes that it monitors and then waits for responses
(RESPONSE message) from « tasks (o < n, traditionally @ = n — f, where f is the
maximum number of failures). task p starts then to suspect every task that does not
respond among the « first ones.

2.2 Checkpointing

Checkpointing and rollback recovery are well-known techniques to provide fault
tolerance for parallel applications [3, 22, 30]. Each application task periodically
saves its state on reliable storage in a checkpoint and, when a failure is detected,
the execution is rolled back and resumed from earlier checkpoints. In a distributed
context, backward error recovery of a task can result in a domino effect: to recover
from a failure, the execution must be rolled back to a consistent state, but rolling back
one task could result in an avalanche of rollbacks of other tasks before a consistent
state is found. Figure 1 illustrates such an effect.

Numerous approaches to checkpointing and rollback recovery have been proposed
in the literature for parallel systems. Checkpointing techniques can be divided into
two categories: consistent and independent checkpointing.

With consistent checkpointing, tasks coordinate their checkpointing actions such
that the collection of checkpoints represents a consistent state of the whole system
where the saved local state of each task does not depend on the receipt of a message
that is yet to be sent [30]. When a failure occurs, the system restarts from these

Ensuring Application Continuity with Fault Tolerance Techniques 5

5 N
C 3,1M
p3 X X X >

Fig. 1 Cascade of recoveries. Xs represent checkpoints. To recover from p0 failure, tasks p0, p1,
and p3 need to recover from Co,1, Cj 2, and C, 3 to maintain a consistent global state represented
by the red line.

checkpoints. Chandy and Lamport [22] proposed the first algorithm to save a consis-
tent global state, assuming FIFO communication channels. When a task starts a new
checkpoint, it sends a special message called marker over all its output channels.
When a task receives a marker for the first time, it checkpoints. After beginning a
checkpoint, all messages received from a neighbor n are added to the checkpoint
image, until the marker reception from n. Figure 2 illustrates the Chandy-Lamport
algorithm.

app.message
—_—

_marker

Fig. 2 Chandy-Lamport algorithm. Xs represent a consistent global state and messages "in transit"
are logged. In case of failure, all tasks recover only from their last checkpoint.

The main drawback of this approach is that the messages used for synchronizing a
checkpoint are an important source of overhead. Moreover, after a failure, surviving
tasks may have to rollback to their latest checkpoint in order to remain consistent
with recovering tasks. Alternatively, Koo and Toueg [45] reduce the number of tasks
to rollback, by analyzing the interactions between tasks.

In the second approach, each task independently saves its state with no synchro-
nization with the others. This technique is simple, but since the set of checkpoints
may not define a consistent global state, the failure of one task leads to the rollback
of other tasks. A reliable message logging [13, 27] avoids this domino effect. Log-
ging methods fall into two classes: pessimistic and optimistic. Pessimistic message
logging synchronously saves messages [16, 75], i.e., the receiver is blocked until the
message is logged on stable storage. In this way, all sent messages are logged, and a

6 Rafaela Brum, Luan Teylo, Luciana Arantes, and Pierre Sens

task in its recovered execution will directly access the log to receive again messages
in the same order. A recovered task has then no interaction with the others until
it reaches the last state before the failure. The optimistic message logging reduces
failure-free overhead by logging recovery information asynchronously [16, 89]. Sev-
eral messages can be grouped together and written to the stable storage in a single
operation to reduce the logging overhead. However, tasks that survive a failure may
be rolled back.

Another central concern when implementing a checkpointing technique is the
involved time overheads. Basically, they can be divided into recovery and dump. The
latter concerns the time spent recording on stable storage the application state in
checkpoint files [95] while the former is related to the time spent reading these files
and restarting the application. Depending on the recovery approach, the recovery time
can also include extra overheads, such as the time to detect the failure. Consequently,
both time overheads have a direct impact on the efficiency of the checkpointing
technique.

In order to illustrate the difficulty in choosing a good checkpointing strategy,
let’s consider the example in Fig. 3, where two different execution scenarios are
presented. In both cases, the application records a series of checkpoints, and each of
them takes 5 time units to be recorded. In the first scenario, no failure happens, and
the total execution time of the application is 75 time units. In the second scenario,
just after the second checkpointing, the platform faces a failure (represented by the
red x) and the application is interrupted. Once the failure is detected, the recovery
task starts, and the application rolls back to its last record state, finishing with a total
execution time of 95 units.

checkpointing

Scenario] 7 Aery
02 } % % * procedure

__

Scenario
o1

Fig. 3 Execution scenarios illustrate the checkpoint and recovery approach

In both scenarios, the total dump time was 15 units of time (5 units per check-
pointing). In Fig. 3, the recovery took 10 time units.

Sometimes, the advantages of using a checkpoint strategy are not straightforward.
For instance, considering the total execution time without any monetary cost, if a
failure takes place in period 50, an application without checkpointing will restart
from the beginning, spending 110 units of time. Thus, in this case, the checkpoint is
worthwhile. However, if the dump time was 15 time units instead of 5, restarting the
application from the beginning would spend less time. Therefore, the time and cost of
saving and recovering the checkpointed files need to be included in the overall time

Ensuring Application Continuity with Fault Tolerance Techniques 7

and cost of the checkpointing technique which should not be greater than the time
of restarting the application. For this purpose, the storage system where checkpoints
are recorded needs to be not only stable and reliable but also fast.

A second critical parameter that needs to be carefully chosen when using the
checkpoint-rollback recovery techniques is the checkpointing interval which defines
the time between two consecutive checkpoints, i.e., the frequency with which the ap-
plication’s states are recorded. Such a frequency also has an impact on the efficiency
of the checkpoint strategy. On the one hand, the smaller the interval is, the higher the
number of recorded checkpoints, leading to higher dump time. On the other hand, the
longer the interval, the smaller the number of recorded checkpoints and the higher
the recovery time. Thus, the ideal would be to adapt the checkpointing frequency
according to the rate of failures or mean time between failures (MTBF). The closer
the checkpoint frequency is to the frequency of failures, the more optimized the
number of checkpoints will be. In Siavvas and Gelenbe [87], the authors propose
a mathematical model to compute the optimal interval for application-level check-
points of long-running loops. A single expression gives the interval by considering
the program failure rate as well as dump and recovery times.

2.3 Replication

Replication has been applied to achieve fault tolerance in both distributed systems
and databases where a client interacts with a replicated service. They are usually
classified into three main different types: active, semi-active, and passive replication.

In the active replication scheme, also called the state-machine approach [74], all
replicas process the requests received from the client so that their internal states are
closely synchronized. Then, any replica can respond to the client requests to provide
a low response time in the case of a crash. However, to ensure a strong consistency,
all replicas must receive the requests in the same order and require deterministic
processing which renders such a scheme quite costly.

Semi-active replication [24] extends active replication. While the actual process-
ing of a request is performed by all replicas, one of the replicas, the leader, is
responsible for performing the non-deterministic processing and inform the other
ones called the followers.

With the passive replication technique, also called primary-backup [18], one of
the replicas, the primary, receives the requests from the clients and returns responses.
The other replicas, the backups, interact with the primary only and receive state up-
date messages from the primary. This replication technique requires less processing
power than the active ones and makes no assumption on the determinism of process-
ing a request. However, like semi-active replication, the implementation of passive
replication requires a mechanism to agree on the primary (e.g., a leader election
or group membership). If the primary fails, one of the backups takes over. This
leads to a significantly increased response time in the case of failure which makes it
unsuitable in the context of time-critical applications.

8 Rafaela Brum, Luan Teylo, Luciana Arantes, and Pierre Sens

2.4 Fault Tolerant MPI

Some projects as MPI-FT [14] or MPI/FT [20] integrate fault tolerant support into
the MPI standard where failures are totally masked from users and handled by the
MPI library. Unfortunately, several studies point out that user transparent approaches
exhibit poor efficiency on Exaflop platforms [11, 12].

The User Level Failure Mitigation (ULFM) interface [51] adopts an alternative
approach offering to developers of applications a set of functions to implement fault
tolerance taking into account the properties of the target application. ULFM includes
functionalities for task failure detection and communication reconfiguration but it
does not provide a strategy for data restoration.

According to Ansel et al. [5], the checkpointing and rollback recovery of MPI
applications are typically made by using user-Level MPI libraries for checkpointing,
which demands that all communications between tasks are made exclusively through
MPI. Scalable Checkpoint/Restart for MPI (SCR) is probably of the most popular
libraries for MPI applications[53]. It has been in production since 2007 and has
several advantages over other solutions: it is a multilevel library that includes several
strategies to reduce the load of critical shared resources such as the parallel file
system. Another popular library, called the Distributed MultiThreaded CheckPoint-
ing (DMTCP) [5], is also an example of a user-level library for MPI applications
and has been successfully used to checkpoint MPI applications running in a cloud
environment [8].

MPI applications can also be checkpointed at the application level. For instance,
CRAFT [85], an open source library, offer basic functionalities for the implementa-
tion of application-level checkpoints to MPI applications. According to the authors,
the main advantage of such an approach is the reduction of the checkpointing over-
head. Besides that, CRAFT also supports SCR, which enables checkpoint storage
and recovery at the node level.

At the system level, the Berkeley Lab Checkpoint/Restart library [37] (BLCR)
is probably one of the most widely used checkpoint-restart implementations. BLCR
was developed initially for Linux clusters, but Azeem and Helal [8] showed that
BLCR can be used to save MPI applications running in multiple EC2 VMs.

2.5 Fault tolerance in HPC applications

Efficient fault tolerance mechanism for HPC applications should consider perfor-
mance and scalability issues. In an HPC context, fault tolerance mechanisms have
conflicting goals as they should provide good performance in both failure-free exe-
cution and recovery while limiting the amount of resources used. As the failure rate
increases proportionally to the number of nodes, large HPC applications require a
high checkpointing frequency to limit the impact of rollbacks in the response time.
On the other hand, frequency increasing has a direct impact in failure-free execution
performance. Message logging can avoid rolling back all the tasks but at the cost

Ensuring Application Continuity with Fault Tolerance Techniques 9

of saving messages in the node memory, while the memory size per CPU available
tends be smaller as the number of nodes increases. Coordinated checkpointing, does
not require saving any messages but if a failure occurs all tasks need to rollback to
the last checkpoint. Some hybrid protocols, combining coordinated checkpointing
and message logging, have been proposed for fault tolerance of HPC application at
large scale [56, 15].

Note that HPC applications that use MPI [46] can be fault tolerant when using
one of the libraries or approaches discussed in Section 2.4.

3 Fault Tolerance in Clouds

This section discusses the implementation of failure detectors (Section 3.1),
checkpoint-rollback (Section 3.2), and replication (Section 3.4) in the context of
cloud environment. As presented in Section 2, they are extensively used in dis-
tributed fault tolerant systems. They have been extended to clouds by considering at
which level they should be applied (application or provider) and cloud features such
as elasticity, network dynamics, storage, and monetary cost.

In section 3.3, we present some of the existing storage services in public clouds,
and how they can be used alongside the VMs to implement the checkpointing
approach.

Finally, in Section 3.5, we discuss some existing solutions of the literature that
tolerate the revocation of spot and preemptible VMs allocated by applications, guar-
anteeing that the latter execute correctly.

We point out that the addition of a fault tolerance feature can increase the users’
final monetary cost, either because of the contract and use of storage services, extra
VMs, or increment in the execution time caused by additional overheads. Thus,
a critical challenge is to define which resources should be used to implement the
fault tolerance feature, leading to a good trade-off between the monetary cost and
reliability.

3.1 Failure Detectors in Clouds

As highlighted by Bui ez al.[19], failure detectors (FD) in the context of clouds have to
cope with several features of the environment such as elasticity, multi-purposed user
services that continuously cause changes in the system, and the large scale number
of nodes which makes difficult the collection of failure detection information.
Clients and providers can respectively detect faults of application tasks and phys-
ical resources. On the other hand, both of them can detect faults of virtual machines.
The FD associated with an application should monitor the tasks and/or VMs state
during their lifetime. In case of a VM failure, the application requires the allocation

10 Rafaela Brum, Luan Teylo, Luciana Arantes, and Pierre Sens

of a new VM to the provider and then restarts the tasks that were running in the
failed VM in the former [92].

Some works in the literature propose the implementation of failure detection in
clouds [49, 60, 99].

Xiong et al. [99] state that a FD for cloud environments should automatically
adjust its parameters according to the dynamics of the network, which can greatly
vary over time. Hence, they present the SFD, a self-tuning FD for cloud computing
networks. Every SFD module has a sliding window which maintains the most recent
samples of the arrival times and, at the next timeout delay, the parameters are adjusted
using both the information in the sliding window and information from the FD output
meeting, therefore, recent network conditions.

The adaptive failure detector AFD for cloud computing infrastructure [60] exploits
autonomic techniques and does not rely on failure history. It continuously monitors
the cloud execution and collects runtime performance data and then extracts the most
relevant metrics, used to detect possible failures. When the latter is verified, the AFD
adapts itself to these new detection results.

Since clouds are composed of several non-overlapping layers (e.g., laaS, SaaS,
and PaaS), Lee er al. [49] argue that having a single heartbeat-based FD is not a
good solution as failures should be distinguished. For instance, failures in the system
from those of the application or from power supply. Thus, they propose to group
cloud environment components into linear dependent layers. Based on such layers,
their FD solution can determine the faulty layer without needing to conduct fault
detection in all layers.

3.2 Implementing Checkpoints in Cloud

A checkpoint can be implemented into one of the three following distinct levels,
according to the degree of transparency and location in the software stack [8, 40, 87]:
i) application-level, ii) user-level, and iii) system-level.

At the application-level, the code of the application needs to inform when check-
points should be taken. Then, the checkpoint procedure captures the state of the
application through direct interaction with it. Such an approach is expected to be the
most efficient one since the programmer knows which data structures and variables
must be preserved and which may be discarded [72, 87]. However, its applicability
is restricted to the case where the application’s code is available to be modified. Fur-
thermore, the recovery time might be a concern as it consists of the time to request,
boot up, and configure a new VM to charge the application.

At the user-level, checkpoints are implemented in the user space and provide
transparency to the application by virtualizing system calls. According to [40], such
a virtualization allows checkpoint tools to capture the state of the entire process
without being tied to the kernel, providing thus more portability between platforms,
but at the cost of a constant virtualization overhead. Moreover, user-level checkpoints

Ensuring Application Continuity with Fault Tolerance Techniques 11

are usually larger than application-level ones since they cannot take advantage of
memory optimization based on application semantics.

System-level checkpoint procedures are implemented either in the kernel or as
a kernel module. In this case, the whole memory stack of the application is saved.
Different from the user-level implementation, checkpointing at the system level does
not need to virtualize system call interfaces since it has direct access to the kernel
structures [40]. However, they are often linked to the kernel version making them
not portable between different platforms.

3.2.1 Bag-of-Tasks applications

Bag-of-Tasks applications are composed of independent jobs (or tasks) which can
thus be executed in parallel in any order. Such lack of task dependency simplifies the
checkpointing implementation since the latter does not require coordination between
tasks. In other words, each task can take its checkpoint independently.

CRIU [31], a very popular checkpointing tool, has been used in several works to
guarantee reliability for applications running in clouds [42, 93]. It runs at the user-
level and saves the full state of the process without any changes in the application
code. In Teylo et al. [94], the authors applied CRIU to record the checkpoints of BoT
applications running in a Amazon EC2 cloud.

Note that defining a good failure rate in cloud environments is not a straightforward
task, particularly on the client-side. Consequently, in clouds, the checkpoint intervals
are typically either user-defined fixed intervals or adaptive ones [4].

3.3 Reliable Cloud Storage Solutions

Cloud providers have several storage services available to rent. Until January 2022,
Amazon Web Services (AWS) offers a total of 11 storage services divided into seven
categories [83], while Google Cloud Provider (GCP) offers nine different storage
services divided into eight categories [63]. Each storage service focuses on different
needs in an institution’s workflow. For example, AWS DataSync [77] and GCP’s
Data Transfer Services [70] have a major concern on data migration while Amazon
Simple Storage Service (S3) [76] and GCP’s Cloud storage [61] on storing data in
form of objects, without an underlying file system.

Files resulting from checkpoints can be of huge sizes. Furthermore, they need to
be saved fast and easily retrieved. The general storage services based on an object,
file, or block storage, give all guarantees in terms of reliability and are usually
cheaper than specialized storage services. Thus, in this section, we discuss these
services in both AWS and GCP.

Amazon S3 and Cloud Storage are the object storage services from AWS and GCP,
respectively. They similarly represent the objects, using a two-level organization [61,
76]. At the superior level, they use buckets, which are structures similar to folders

12 Rafaela Brum, Luan Teylo, Luciana Arantes, and Pierre Sens

that have a unique global name and help the organization of data from different users,
identifying and billing them accordingly. In S3, each bucket is restricted to a single
region, and each account can associate up to 100 buckets. In Cloud Storage, the user
can configure the bucket availability to a single cloud region, in two close regions
(dual-region), or several regions spread in a larger area (multi-region). There is no
limit in GCP associated with the number of buckets in a single account, but there
are bounds regarding the bucket’s name and creation rate [62].

Objects are the inferior level of these two storage services. They contain the user
stored data represented by a name and unique key used to access the object!>2. Both
services have an upper limit to a single object size of 5TB [62, 76] and allow the user
to create, change, and read objects from a bucket using a single operation. However,
if the user wants to rename or move the object to another place, it takes at least two
operations, downloading the object to a local system and then uploading it with the
new name or to the new location.

The block storage service of AWS is called Amazon FElastic Block Service
(EBS) [78], and the ones of GCP are Persistent Disk [68] and Local SSD [66].
In these services, the user creates storage volumes and attaches them to directories
inside a Virtual Machine (VM) of each provider [73]. EBS allows the user to allo-
cate disks from 1 GB to 156 TB [78], and these volumes can be Solid State Drives
(SSDs), with low latency, or Hard Disk Drives (HDDs), with higher throughput.
AWS restricts the availability of an EBS volume to a single zone (data center) of a
region. In the Persistent Disk service of GCP, it is possible to create HDDs or SSDs
volumes in a single cloud zone or all zones of a cloud region. The size limit for the
former is 10 GB to 64 TB and for the latter is 200 GB to 64 TB [69].

Both AWS and GCP allow the user only to increase the size of the volume while
attached to a VM3-4. Besides, a specific type of AWS’s EBS volume and all GCP’s
Persistent Disk types can be attached to multiple VMs in read-only mode. However,
the user does not know the exact physical location of an EBS or Persistent Disk
volume. GCP’s Local SSD service allows users to physically attach an SSD volume
of size 375 GB to a single instance, offering higher performance and lower latency
compared to GCP’s Persistent Disks [66].

Regarding the file storage services, AWS offers EFS [80] and FSx [82], while GCP
offers only Filestore [64]. FSx focuses on application migration from on-premise
clusters to cloud resources. The user can choose from four high-performance file
systems (NetApp ONTAP, OpenZFS, Windows File Server, and Lustre), making
it easier to connect FSx to a local machine and send data to AWS. On the other
hand, Amazon EFS and GCP Filestore provide a simple and scalable file system.

1 https://docs.aws.amazon.com/AmazonS3/latest/userguide/UsingObjects.html, last access in July
19", 2022

2 https://cloud.google.com/storage/docs/naming-objects, last access in July 197, 2022

3 https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ebs-modify-volume.html, last access in
July 19", 2022

4 https://cloud.google.com/compute/docs/disks/working-with-persistent-disks#resize_pd, last ac-
cess in July 19", 2022

Ensuring Application Continuity with Fault Tolerance Techniques 13

They increase and decrease their allocated size automatically when the user adds or
removes files. Both are compatible only with the Network File System (NFS).

The main advantages of these three file storage systems are their availability in
all zones of a single region and the accessibility in parallel by several VMs, up to
500 VMs in GCP [65] and 120 VMs in AWS [81]. However, GCP imposes a 16 TiB
size limit on a single file, and AWS establishes a 47.9 TiB size limit on a single file.

3.3.1 Choice of the storage service

In case of using checkpoint to tolerate failures, the choice of the most suitable
storage service mainly depends on the checkpointing patterns of the application. If
the implementation requires a dedicated space to store the checkpoints with a single
task accessing it per time, the straightforward choice is using a local volume from
Amazon EBS or GCP’s Local SSD. However, in this case, the price depends not
only on what it is stored but also the size of the volume. On the other hand, if the
application stores concurrent multiple checkpoints or different tasks access one’s
checkpoint simultaneously, it is possible to use the object storage services (Amazon
S3 or GCP’s Cloud Storage) or the file storage systems (Amazon EFS or GCP’s
Firestore). The main difference between them is that the object storage services are
cheaper than the file storage ones while the latter usually have better performance
than the former.

In Teylo et al. [95], the authors compared the dump and recovery time of a
checkpoint stored in Amazon S3, Amazon EBS, and Amazon EFS. They showed that
the fastest service to store the checkpoint is the EBS, while the EFS is the fastest in its
recovery (Figures 1 and 4 in Teylo et al.[95]). Moreover, the time to store sequential
checkpoints in Amazon S3 consists of 37.1% of the total execution time, while in EBS
corresponds only to 11.4% (Figure 3 in Teylo et al.[95]). However, most works in the
literature use Amazon S3 as the storage service for storing checkpoints [93, 101, 102]
and very few ones use a spare EBS [90]. Such a difference can be explained due to
the possibility of concurrent access to a bucket while each volume of EBS is limited
to a single VM at a time which in several types of HPC applications is not viable.
An example of such applications is those with several independent tasks executing
in parallel (Bag-of-Tasks) with data dependencies between them (workflows) or
data exchange. On the other hand, in Amazon, it is more costly to store multiple
checkpoints in EFS than in S3. For example, storing 30GB for a month in S3 costs
$21.91 while in EFS costs $30.19 [95].

According to Nicolae and Cappello [58], one strong argument for using Amazon
EBS instead of Amazon S3 to store checkpoints is that most of the time the VMs
uses only part of the attached volume instead of the full allocated size, leaving a
huge portion of its storage to be paid without use. Therefore, the authors propose a
shared pool, composed of all spare disk spaces, to store and recover the checkpoints
of applications. As several disks are used, different parts of the pool can be accessed
simultaneously. To further benefit from this multitude of disks, all checkpoints

14 Rafaela Brum, Luan Teylo, Luciana Arantes, and Pierre Sens

are divided into small pieces and distributed among the disks so that they can be
recovered in smaller time.

3.4 Replication

Depending on the level of control on the placement of each replicated task, we can
divide replication in clouds based on either the provider or the client’s views. The
former sees the virtual machines (VMs) apart from the physical ones, which allows
the deployment of different replicas into different physical resources. On the other
hand, a client cannot dictate where to deploy their VMs. In 2017, AWS released
the spread placement group approach that allows users to request the placement
of their VMs in distinct hardware> but limited to seven VMs per cloud zone [84].
Thus, if the user needs more than seven VMs for her/his application, the only way to
guarantee the mapping to different resources is by choosing a different cloud zone per
placement group (seven VMs). However, in this case, communication time between
the deployed VMs considerably increases as well as their data access time, which
can become prohibitive to some applications. Due to such performance issues, most
works found in the literature assume that different VMs are in separated physical
resources, even in the same cloud region. It is also worth pointing out that the task
replication approach increases the total execution cost for the client since he/she pays
for the execution of every replica. This higher monetary cost justifies why there exist
more fault-tolerant solutions in clouds based on checkpointing than on replication
because the former does not consume more resources than the strictly necessary
[58].

To the best of our knowledge, there is only one work concerning replication in
the provider’s view. Qiu et al. [71] presented an active task replication framework
that executes the clients’ jobs, each job mapped as a set of virtual machines with
distinct tasks. The framework focuses on increasing reliability and performance and
decreasing energy consumption. After receiving a client request, the framework ac-
tively creates replicas for each VM and allocates them to different and heterogeneous
resources.

There are some works on task replication from the client’s view, in which the
physical data center of each VM is unknown. In [104], Zhu et al. present a passive
replication technique, in which all tasks of a workflow have a primary and a backup
copy. They schedule them in different VMs and balance the number of primary
copies between all deployed instances. Li et al. [S0] and Xie et al. [98] propose task
replication in clouds with a variable number of replicas per task. Both papers use
empirical fault rates in a Poisson distribution to estimate the number of copies per
task, aiming at minimizing costs. Li et al. consider a deadline constraint and thus
need to schedule all replicas while Xie et al. consider reliability bound, which allows
the removal of those duplicates that surpass such a limit in order to reduce costs.

5 https://aws.amazon.com/about-aws/whats-new/2017/11/introducing-spread-placement-groups-
for-amazon-ec2/, last access August 1st, 2022

Ensuring Application Continuity with Fault Tolerance Techniques 15

Consequently, the latter ensures lower reliability than the former but with lower
execution costs.

Another interesting paper is the one by Nik ez al. [55] where the authors propose
an active task replication solution that does not increase execution costs. Tasks are
replicated in the idle slots of the scheduling solution and there exists a maximum of
one replica per task. As the idle spaces may not correspond to every task in the job,
it is possible to calculate the probability of each task failure in the primary assigned
virtual machine and to use this probability together with the expected execution time
of each task to select the ones to replicate. However, the approach does not guarantee
a minimum of reliability to all tasks since some of them will not have replicas.

3.5 Fault Tolerance and Preemptible VMs

Preemptible VMs are offered with a steep discount but can be revoked at any time
by the cloud provider. Therefore, fault tolerance techniques are mandatory for long-
running applications using these VMs in order to ensure their complete execution.
In the related literature, several works have been proposed to explore preemptible
(also called spots) VMs to reduce the monetary cost of the executions. The majority
of them rely on checkpoint-rollback approaches to guarantee that applications will
finish even if revocations occur. Moreover, on-demand VMs are generally used as
a backup resource. In this way, when a spot VM is revocated, the application is
typically resumed on an on-demand VM. In Sharma et al.[86], for instance, the
authors proposed SpotCheck, a framework that uses nested VMs within spot VMs
to provide the illusion of a platform that provides always-available VMs. In order
to cope with spot revocations, the nested VMs are migrated to an on-demand VM
whenever a spot revocation occurs.

AutoBot [96] uses both spot and on-demand VMs for executing applications
with a user-defined deadline. The framework migrates applications from spot to
on-demand VMs to satisfy time constraints. It also uses checkpoint strategies to
ensure reliability when executing on the preemptive VMs.Yi et al. propose in [101]
an adaptive checkpoint that takes into account the history of the price of the spot
VMs to predict their revocation and decide when a checkpoint should be recorded.

In Subramanya et al.[90], the authors implement a proactive mechanism, where
the number of checkpoints is neither related to the VMs’ volatility nor the number of
revocations, but on a given checkpointing interval. In Varshney and Simmhan [96],
three checkpoint strategies are proposed: i) optimistic checkpoint, where the state of
the task is recorded just before the migration to an on-demand VM,; ii) grace period
checkpoint, where the two minutes between the notification of the interruption of
a spot VM and the VM interruption itself are used to take the checkpoint; and iii)
sliding checkpoint, where the checkpoint is taken in fixed intervals.

A framework that exploits both spot and on-demand VMs to execute Bag-of-Tasks
applications is proposed by Teylo et al. [93]. It aims at minimizing the execution’s
monetary cost, respecting a deadline defined by the user. Periodically, the state of

16 Rafaela Brum, Luan Teylo, Luciana Arantes, and Pierre Sens

the application is recorded by checkpointing. Then, in case of spot VM revocation,
the checkpoints are used to resume the application on on-demand VMs.

4 Conclusion and Future Directions

In this chapter, we have discussed checkpoint/rollback and replication techniques
implemented in clouds and/or application tasks that provide fault tolerance to HPC
applications, ensuring their correct and complete execution. However, most of the
referenced solutions mainly concern applications that use only CPUs for computa-
tion. We believe that accelerators, such as GPUs and FPGAs, can be used to reduce
the total execution time of different HPC applications, and, therefore, there is a
growing concern around fault tolerant solutions in clouds using accelerators.

GPUs are accelerators with thousands of simple cores to execute a single in-
struction in multiple data while FPGAs are reconfigurable devices with logic blocks
that can map different programs in specialized hardware. The increasing number of
supercomputers with accelerators in the Top500 list shows that they already take part
in HPC [28]. As presented by Jain and Cooperman [41], the number of clusters with
Graphics Processing Units (GPUs) in the list was 136 in November 2019, growing
to 151 in November 2021. At the same time, most cloud providers offer VMs with
accelerators, such as GPUs and Field-Programmable Gate Array (FPGAs), to the
user [67, 79]. However, to the best of our knowledge, there are few (resp., any) works
in the literature that propose checkpoints on GPUs (resp. FPGAs) on Clouds.

Since GPU architectures evolve in a constant and fast way, any effort to create a
generic checkpoint solution is very difficult. Therefore, most existing ones become
very fast obsolete [33, 43, 59, 91]. Jain and Cooperman [41] present a GPU check-
point approach in an initial development stage, suitable only for small applications.
Hence, HPC applications using GPUs on Clouds require application-level check-
points or some other fault-tolerant techniques to ensure their correct and complete
execution in case of failures.

Lee and Son [48] propose both application-level checkpoint and live migration to
reduce computational costs when training Deep Learning tasks on Clouds. The model
weights are saved after each training epoch, used thus as checkpoints. Furthermore,
the spot VM price per region is monitored aiming at migrating tasks to the cheapest
region. In Zhou er al. [103], a fault-tolerant stencil computation to AWS GPU
instances, based on two-phased application-level checkpoints is presented. The first
phase blocks the execution of the stencil while coping the GPU memory block to
the host memory while the second one sends this memory block to a backup server
asynchronously. The two-phased application-level checkpoints behave as a pipeline
to surpass the communication overhead between the host and the backup server.
Brum et al. [17] present a framework to execute a sequence alignment application
on AWS spot VMs. The goal is to minimize the monetary cost, considering user-
defined deadline constraints. Application-level checkpoints periodically save rows

Ensuring Application Continuity with Fault Tolerance Techniques 17

of the computed matrix in order to find the optimal sequence alignment. When a
spot VM is revoked, its execution is restarted in another VM from the last saved row.

Regarding FPGA checkpointing, as it is a reconfigurable hardware, basically, two
different checkpoint approaches are used: the first one is applied to the task in the
FPGA; the second one concerns hardware configuration itself [44]. The former is
more restricted as it needs to be restored in the same device with the same hardware
configuration while in the latter, the computation can be restarted in another device.

Most early works focus on executing multiple tasks in the same FPGA to allow
preemption and context switch inside a single FPGA. Therefore, they present several
mechanisms to stop and restore the execution of the concurrent tasks, using only task-
level FPGA checkpoints. However, when we think of a fault-tolerant context, this
checkpoint approach cannot be considered a generic one due to the restriction in the
restore. In Koch et al. [44], the authors propose the first formal model for hardware
checkpoints with different mechanisms to change each hardware module, improv-
ing, thus, the capability of checkpointing. Since this first formal model, there have
been several others, based on signal collection to reconstruct FPGAs checkpointing
execution traces [34, 38, 39, 88]. On the other hand, all these models need particular
hardware, which increases overhead costs to the FPGA synthesis, rendering them
unpractical in most cases [29, 36].

References

1. Aguilera, M.K., Delporte-Gallet, C., Fauconnier, H., Toueg, S.: On Implementing Omega with
Weak Reliability and Synchrony Assumptions. In: Proceedings of the Twenty-Second Annual
Symposium on Principles of Distributed Computing, PODC ’03, p. 306-314. Association for
Computing Machinery, New York, NY, USA (2003)

2. Aguilera, M.K., Delporte-Gallet, C., Fauconnier, H., Toueg, S.: Communication-Efficient
Leader Election and Consensus with Limited Link Synchrony. In: Proceedings of the Twenty-
Third Annual ACM Symposium on Principles of Distributed Computing, p. 328-337. Asso-
ciation for Computing Machinery, New York, NY, USA (2004)

3. Alvisi, L., Marzullo, K.: Message logging: pessimistic, optimistic, causal, and optimal. IEEE
Transactions on Software Engineering 24(2), 149-159 (1998)

4. Amoon, M., El-Bahnasawy, N., Sadi, S., Wagdi, M.: On the design of reactive approach with
flexible checkpoint interval to tolerate faults in cloud computing systems. Journal of Ambient
Intelligence and Humanized Computing 10(11), 4567—4577 (2019)

5. Ansel, J., Arya, K., Cooperman, G.: DMTCP: Transparent checkpointing for cluster com-
putations and the desktop. In: 2009 IEEE International Symposium on Parallel Distributed
Processing, pp. 1-12 (2009)

6. Arantes, L., Greve, F., Sens, P., Simon, V.: Eventual Leader Election in Evolving Mobile
Networks. In: Proceedings of the 17th International Conference on Principles of Distributed
Systems - Volume 8304, OPODIS 2013, p. 23-37. Springer-Verlag, Berlin, Heidelberg (2013)

7. Arévalo, S., Anta, A.F., Imbs, D., Jiménez, E., Raynal, M.: Failure Detectors in Homonymous
Distributed Systems (with an Application to Consensus). J. Parallel Distrib. Comput. 83(C),
83-95 (2015)

8. Azeem, B.A., Helal, M.: Performance evaluation of checkpoint/restart techniques: For MPI
applications on Amazon cloud. In: 2014 9th International Conference on Informatics and
Systems, pp. PDC—49. IEEE (2014)

18

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

217.

28.
29.

Rafaela Brum, Luan Teylo, Luciana Arantes, and Pierre Sens

. Bertier, M., Marin, O., Sens, P.: Performance analysis of a hierarchical failure detector. In:

International Conference on Dependable Systems and Networks, 2003 (DSN), pp. 635-644
(2003)

Bonnet, F., Raynal, M.: Anonymous asynchronous systems: the case of failure detectors.
Distributed Comput. 26(3), 141-158 (2013)

Bosilca, G., Bouteiller, A., Brunet, E., Cappello, F., Dongarra, J.J., Guermouche, A., Hérault,
T., Robert, Y., Vivien, F., Zaidouni, D.: Unified model for assessing checkpointing protocols
at extreme-scale. Concurr. Comput. Pract. Exp. 26(17), 2772-2791 (2014)

Bougeret, M., Casanova, H., Robert, Y., Vivien, F., Zaidouni, D.: Using group replication for
resilience on exascale systems. Int. J. High Perform. Comput. Appl. 28(2), 210-224 (2014)
Bouteiller, A., Bosilca, G., Dongarra, J.J.: Redesigning the message logging model for high
performance. Concurr. Comput. Pract. Exp. 22(16), 2196-2211 (2010)

Bouteiller, A., Bosilca, G., Dongarra, J.J.: Redesigning the message logging model for high
performance. Concurr. Comput. Pract. Exp. 22(16), 2196-2211 (2010)

Bouteiller, A., Hérault, T., Bosilca, G., Dongarra, J.J.: Correlated set coordination in fault
tolerant message logging protocols for many-core clusters. Concurr. Comput. Pract. Exp.
25(4), 572-585 (2013)

Bouteiller, A., Ropars, T., Bosilca, G., Morin, C., Dongarra, J.J.: Reasons for a pessimistic or
optimistic message logging protocol in MPI uncoordinated failure, recovery. In: Proceedings
of the 2009 IEEE International Conference on Cluster Computing, August 31 - September 4,
2009, New Orleans, Louisiana, USA, pp. 1-9. IEEE Computer Society (2009)

Brum, R.C., Sousa, W.P.,, Melo, A.C.M.A., Bentes, C., de Castro, M.C.S., Drummond,
L.M.A.: A Fault Tolerant and Deadline Constrained Sequence Alignment Application on
Cloud-Based Spot GPU Instances. In: L. Sousa, N. Roma, P. Tomas (eds.) Euro-Par 2021:
Parallel Processing, pp. 317-333. Springer International Publishing, Cham (2021)
Budhiraja, N., Marzullo, K., Schneider, F.B., Toueg, S.: The Primary-Backup Approach, p.
199-216. ACM Press/Addison-Wesley Publishing Co., USA (1993)

Bui, K.T., Vo, L.V., Nguyen, C.M., Pham, T.V., Tran, H.C.: A fault detection and diagnosis
approach for multi-tier application in cloud computing. J. Commun. Networks 22(5), 399414
(2020)

Buntinas, D., Coti, C., Hérault, T., Lemarinier, P., Pilard, L., Rezmerita, A., Rodriguez,
E., Cappello, F.: Blocking vs. non-blocking coordinated checkpointing for large-scale fault
tolerant MPI protocols. Future Gener. Comput. Syst. 24(1), 73-84 (2008)

Chandra, T.D., Toueg, S.: Unreliable Failure Detectors for Reliable Distributed Systems. J.
ACM 43(2), 225-267 (1996)

Chandy, K.M., Lamport, L.: Distributed Snapshots: Determining Global States of Distributed
Systems. ACM Trans. Comput. Syst. 3(1), 63-75 (1985)

Chen, W., Toueg, S., Aguilera, M.K.: On the Quality of Service of Failure Detectors. IEEE
Trans. Comput. 51(1), 13-32 (2002)

Chereque, M., Powell, D., Reynier, P., Richier, J.L., Voiron, J.: Active replication in Delta-
4. In: [1992] Digest of Papers. FTCS-22: The Twenty-Second International Symposium on
Fault-Tolerant Computing, pp. 28-37 (1992)

D’Antoni, J.: The Night the Lights Went Out in the Cloud: Lessons from the AWS Out-
age. https://redmondmag.com/articles/2020/12/02/lessons-from-aws-outage.aspx. Accessed:
2022-03-20

Das, A., Gupta, 1., Motivala, A.: SWIM: scalable weakly-consistent infection-style process
group membership protocol. In: Proceedings International Conference on Dependable Sys-
tems and Networks (DSN), pp. 303-312 (2002)

Dicheyv, K., Sensi, D.D., Nikolopoulos, D.S., Cameron, K.W., Spence, I.: Power Log’n’Roll:
Power-Efficient Localized Rollback for MPI Applications Using Message Logging Protocols.
IEEE Transactions on Parallel & Distributed Systems 33(06), 1276—1288 (2022)

Dongarra, J., Luszczek, P.: TOP500, pp. 2055-2057. Springer US, Boston, MA (2011)
Egwutuoha, L.P., Levy, D., Selic, B., Chen, S.: A survey of fault tolerance mechanisms and
checkpoint/restart implementations for high performance computing systems. The Journal of
Supercomputing 65(3), 1302-1326 (2013)

Ensuring Application Continuity with Fault Tolerance Techniques 19

30.

31

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

49.

Elnozahy, E.N.M., Alvisi, L., Wang, Y.M., Johnson, D.B.: A Survey of Rollback-Recovery
Protocols in Message-Passing Systems. ACM Comput. Surv. 34(3), 375-408 (2002)
Emelyanov, P.: Criu: Checkpoint/restore in userspace, july 2011. https://criu.org (2011)
Garcia, A.L., del Castillo, E.F., Plasencia, I.C.: An efficient cloud scheduler design supporting
preemptible instances. Future Generation Computer Systems 95, 68-78 (2019)

Garg, R., Mohan, A., Sullivan, M., Cooperman, G.: CRUM: Checkpoint-Restart Support for
CUDA’s Unified Memory. In: 2018 IEEE International Conference on Cluster Computing
(CLUSTER), pp. 302-313 (2018)

Goeders, J., Wilton, S.J.E.: Signal-Tracing Techniques for In-System FPGA Debugging of
High-Level Synthesis Circuits. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems 36(1), 83-96 (2017)

Gomez-Calzado, C., Lafuente, A., Larrea, M., Raynal, M.: Fault-Tolerant Leader Election in
Mobile Dynamic Distributed Systems. In: IEEE 19th Pacific Rim International Symposium
on Dependable Computing (PRDC), pp. 78-87 (2013)

Hale, R., Hutchings, B.: Enabling Low Impact, Rapid Debug for Highly Utilized FPGA De-
signs. In: 2018 28th International Conference on Field Programmable Logic and Applications
(FPL), pp. 81-813 (2018)

Hargrove, P.H., Duell, J.C.: Berkeley lab checkpoint/restart (blcr) for linux clusters. In:
Journal of Physics: Conference Series, vol. 46, p. 067. IOP Publishing (2006)

Holanda Noronha, D., Zhao, R., Goeders, J., Luk, W., Wilton, S.J.: On-Chip FPGA Debug In-
strumentation for Machine Learning Applications. In: Proceedings of the 2019 ACM/SIGDA
International Symposium on Field-Programmable Gate Arrays, FPGA 19, p. 110-115. As-
sociation for Computing Machinery, New York, NY, USA (2019)

Hung, E., Wilton, S.J.E.: Scalable Signal Selection for Post-Silicon Debug. IEEE Transactions
on Very Large Scale Integration (VLSI) Systems 21(6), 1103-1115 (2013)

Hursey, J.: Coordinated checkpoint/restart process fault tolerance for MPI applications on
HPC systems. Indiana University (2010)

Jain, T., Cooperman, G.: CRAC: Checkpoint-Restart Architecture for CUDA with Streams and
UVM. In: SC20: International Conference for High Performance Computing, Networking,
Storage and Analysis, pp. 1-15 (2020)

Jesus Leonardo; Drummond, L.M.A., Oliveira, D.d.: Eeny meeny miny moe: Choosing the
fault tolerance technique for my cloud workflow. In: Latin American High Performance
Computing Conference, pp. 321-336. Springer (2017)

Jiang, H., Zhang, Y., Jennes, J., Li, K.C.: A Checkpoint/Restart Scheme for CUDA Programs
with Complex Computation States. International Journal of Networked and Distributed
Computing 1, 196-212 (2013)

Koch, D., Haubelt, C., Teich, J.: Efficient Hardware Checkpointing: Concepts, Overhead
Analysis, and Implementation. In: Proceedings of the 2007 ACM/SIGDA 15th International
Symposium on Field Programmable Gate Arrays, FPGA *07, p. 188-196. Association for
Computing Machinery, New York, NY, USA (2007)

Koo, R., Toueg, S.: Checkpointing and Rollback-Recovery for Distributed Systems. IEEE
Transactions on Software Engineering SE-13(1), 23-31 (1987)

Laguna, 1., Marshall, R., Mohror, K., Ruefenacht, M., Skjellum, A., Sultana, N.: A large-
scale study of mpi usage in open-source hpc applications. In: Proceedings of the Inter-
national Conference for High Performance Computing, Networking, Storage and Analy-
sis, SC ’19. Association for Computing Machinery, New York, NY, USA (2019). DOI
10.1145/3295500.3356176. URL https://doi.org/10.1145/3295500.3356176

Larrea, M., Anta, A.F., Arévalo, S.: Implementing the weakest failure detector for solving the
consensus problem. Int. J. Parallel Emergent Distributed Syst. 28(6), 537-555 (2013)

Lee, K., Son, M.: DeepSpotCloud: Leveraging Cross-Region GPU Spot Instances for Deep
Learning. In: 2017 IEEE 10th Int. Conf. on Cloud Computing (CLOUD), pp. 98-105 (2017)
Lee, Y.L., Liang, D., Wang, W.J.: Optimal Online Liveness Fault Detection for Multilayer
Cloud Computing Systems. IEEE Transactions on Dependable and Secure Computing (2021)

20

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

Rafaela Brum, Luan Teylo, Luciana Arantes, and Pierre Sens

Li,Z.,Yu,J.,Hu, H., Chen, J., Hu, H., Ge, J., Chang, V.: Fault-tolerant scheduling for scientific
workflow with task replication method in cloud. In: V. Munoz, R. Walters, F. Firouzi, G. Wills,
V. Chang (eds.) IoTBDS 2018 - Proceedings of the 3rd International Conference on Internet
of Things, Big Data and Security, pp. 95-104. SciTePress (2018)

Losada, N., Gonzilez, P., Martin, M.J., Bosilca, G., Bouteiller, A., Teranishi, K.: Fault
tolerance of MPI applications in exascale systems: The ULFM solution. Future Gener.
Comput. Syst. 106, 467481 (2020)

Manvi, S.S., Shyam, G.K.: Resource management for Infrastructure as a Service (IaaS) in
cloud computing: A survey. Journal of network and computer applications 41, 424440
(2014)

Moody, A., Bronevetsky, G., Mohror, K., Supinski, B.R.d.: Design, modeling, and evalu-
ation of a scalable multi-level checkpointing system. In: SC ’10: Proceedings of the 2010
ACM/IEEE International Conference for High Performance Computing, Networking, Storage
and Analysis, pp. 1-11 (2010)

Mostefaoui, A., Mourgaya, E., Raynal, M.: Asynchronous implementation of failure detectors.
In: International Conference on Dependable Systems and Networks (DSN), pp. 351-360
(2003)

Mousavi Nik, S.S., Naghibzadeh, M., Sedaghat, Y.: Task replication to improve the reliability
of running workflows on the cloud. Cluster Computing 24(1), 343-359 (2021)

Ndiaye, N.M., Sens, P., Thiare, O.: Performance comparison of hierarchical checkpoint pro-
tocols grid computing. Int. J. Interact. Multim. Artif. Intell. 1(5), 46-53 (2012)

Newton, C.: How a typo took down S3, the backbone of the internet.
https://www.theverge.com/2017/3/2/14792442/amazon-s3-outage-cause-typo-internet-
server. Accessed: 2022-03-20

Nicolae, B., Cappello, F.: BlobCR: Efficient checkpoint-restart for HPC applications on IaaS
clouds using virtual disk image snapshots. In: SC’11: Proceedings of 2011 International
Conference for High Performance Computing, Networking, Storage and Analysis, pp. 1-12.
IEEE (2011)

Nukada, A., Takizawa, H., Matsuoka, S.: NVCR: A Transparent Checkpoint-Restart Library
for NVIDIA CUDA. In: 2011 IEEE International Symposium on Parallel and Distributed
Processing Workshops and Phd Forum, pp. 104-113 (2011)

Pannu, H.S., Liu, J., Guan, Q., Fu, S.: AFD: Adaptive failure detection system for cloud
computing infrastructures. In: 31st IEEE International Performance Computing and Com-
munications Conference, IPCCC 2012, Austin, TX, USA, December 1-3, 2012, pp. 71-80.
IEEE Computer Society (2012)

Provider, G.C.: Cloud Storage. https://cloud.google.com/storage (2021). Accessed 19 De-
cember 2021

Provider, G.C.: Quotas & limits - Cloud Storage. https://cloud.google.com/storage/quotas
(2021). Accessed 19 December 2021

Provider, G.C.: Cloud Computing Services. https://cloud.google.com/products/storage
(2022). Accessed 11 January 2022

Provider, G.C.: Filestore. https://cloud.google.com/filestore (2022). Accessed 11 January
2022

Provider, G.C.: Limits - Filestore. https://cloud.google.com/filestore/docs/limits (2022). Ac-
cessed 12 January 2022

Provider, G.C.: Local SSD. https://cloud.google.com/local-ssd (2022). Accessed 11 January
2022

Provider, G.C.: Machine Families - Documentation.
https://cloud.google.com/compute/docs/machine-types#predefined_machine_types (2022).
Accessed 14 March 2022

Provider, G.C.: Persistent Disk. https://cloud.google.com/persistent-disk (2022). Accessed
11 January 2022

Provider, G.C: Storage Options - Compute Engine.
https://cloud.google.com/compute/docs/disks (2022). Accessed 11 January 2022

Ensuring Application Continuity with Fault Tolerance Techniques 21

70.

71.

72.

73.

74.

75.

76.

71.

78.

79.

80.

81.

82.

83.

84.

85.

86.

87.

88.

89.

90.

Provider, G.C.: Storage Transfer Service. https://cloud.google.com/storage-transfer-service
(2022). Accessed 11 January 2022

Qiu, X., Sun, P, Dai, Y.: Optimal task replication considering reliability, performance, and
energy consumption for parallel computing in cloud systems. Reliability Engineering &
System Safety 215, 107834 (2021)

Roman, E.: A survey of checkpoint/restart implementations. In: Lawrence Berkeley National
Laboratory, Tech. Citeseer (2002)

Ruiz-Alvarez, A., Humphrey, M.: An Automated Approach to Cloud Storage Service Selec-
tion. In: Proceedings of the 2nd International Workshop on Scientific Cloud Computing,
ScienceCloud *11, p. 39-48. Association for Computing Machinery, New York, NY, USA
(2011)

Schneider, F.B.: Implementing Fault-Tolerant Services Using the State Machine Approach:
A Tutorial. ACM Comput. Surv. 22(4), 299-319 (1990)

Sens, P., Folliot, B.: Performance Evaluation of Fault Tolerance for Parallel Applications in
Networked Environments. In: 1997 International Conference on Parallel Processing (ICPP
’97), August 11-15, 1997, Bloomington, IL, USA, Proceedings, pp. 334-341. IEEE Computer
Society (1997)

Services, A.W.: Amazon S3. https://aws.amazon.com/s3/ (2021). Accessed 19 December
2021

Services, A.W.: Amazon DataSync. https://aws.amazon.com/datasync/ (2022). Accessed 11
January 2022

Services, A.W.: Amazon EBS. https://aws.amazon.com/ebs (2022). Accessed 11 January
2022

Services, A.W.: Amazon EC2 Instance Types. https://aws.amazon.com/ec2/instance-types/
(2022). Accessed 14 March 2022

Services, A.W.: Amazon EFS. https://aws.amazon.com/efs/ (2022). Accessed 11 January
2022

Services, AW Amazon EFS quotas and limits.
https://docs.aws.amazon.com/efs/latest/ug/limits.html (2022). Accessed 12 January
2022

Services, A.W.: Amazon FSx. https://aws.amazon.com/fsx/ (2022). Accessed 11 January
2022

Services, A.W.: Cloud Storage on AWS. https://aws.amazon.com/products/storage/ (2022).
Accessed 11 January 2022

Services, A.W.: Placement Groups - Amazon Elastic Compute Cloud.
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/placement-groups.html ~ (2022).
Accessed 1 August 2022

Shahzad, F., Thies, J., Kreutzer, M., Zeiser, T., Hager, G., Wellein, G.: CRAFT: A library for
easier application-level checkpoint/restart and automatic fault tolerance. IEEE Transactions
on Parallel and Distributed Systems 30(3), 501-514 (2018)

Sharma, P, Lee, S., Guo, T., Irwin, D.E., Shenoy, P.J.: SpotCheck: designing a derivative IaaS
cloud on the spot market. In: Proceedings of the Tenth European Conference on Computer
Systems, EuroSys 2015, Bordeaux, France, April 21-24, 2015, pp. 16:1-16:15 (2015)
Siavvas, M., Gelenbe, E.: Optimum interval for application-level checkpoints. In: 2019 6th
IEEE International Conference on Cyber Security and Cloud Computing (CSCloud)/2019
5th IEEE International Conference on Edge Computing and Scalable Cloud (EdgeCom), pp.
145-150. IEEE (2019)

Sidler, D., Eguro, K.: Debugging framework for FPGA-based soft processors. In: 2016
International Conference on Field-Programmable Technology (FPT), pp. 165-168 (2016)
Strom, R., Yemini, S.: Optimistic Recovery in Distributed Systems. ACM Trans. Comput.
Syst. 3(3), 204-226 (1985)

Subramanya, S., Guo, T., Sharma, P., Irwin, D.E., Shenoy, P.J.: SpotOn: a batch comput-
ing service for the spot market. In: Proceedings of the Sixth ACM Symposium on Cloud
Computing, SoCC 2015, Kohala Coast, Hawaii, USA, August 27-29, 2015, pp. 329-341
(2015)

22

91.

92.

93.

94.

95.

96.

97.

98.

99.

100.

101.

102.

103.

104.

Rafaela Brum, Luan Teylo, Luciana Arantes, and Pierre Sens

Takizawa, H., Sato, K., Komatsu, K., Kobayashi, H.: CheCUDA: A Checkpoint/Restart Tool
for CUDA Applications. In: 2009 International Conference on Parallel and Distributed
Computing, Applications and Technologies, pp. 408—413 (2009)

Tchana, A., Broto, L., Hagimont, D.: Fault tolerant approaches in cloud computing infras-
tructures. In: The Eighth International Conference on Autonomic and Autonomous Systems,
pp. 4248 (2012)

Teylo, L., Arantes, L., Sens, P., Drummond, L.M.A.: A dynamic task scheduler tolerant to
multiple hibernations in cloud environments. Cluster Computing 24(2), 1051-1073 (2021)
Teylo, L., Arantes, L., Sens, P., Drummond, L.M.A.: Scheduling Bag-of-Tasks in Clouds
using Spot and Burstable Virtual Machines. IEEE Transactions on Cloud Computing pp. 1-1
(2021)

Teylo, L., Brum, R.C., Arantes, L., Sens, P., Drummond, L.M.A.: Developing Checkpointing
and Recovery Procedures with the Storage Services of Amazon Web Services. In: 49th
International Conference on Parallel Processing - ICPP: Workshops, ICPP Workshops ’20.
Association for Computing Machinery, New York, NY, USA (2020)

Varshney, P., Simmhan, Y.: AutoBoT: Resilient and Cost-Effective Scheduling of a Bag of
Tasks on Spot VMs. IEEE Trans. Parallel Distrib. Syst. 30(7), 1512-1527 (2019)
Vishwanath, K.V., Nagappan, N.: Characterizing cloud computing hardware reliability. In:
Proceedings of the 1st ACM symposium on Cloud computing, pp. 193-204 (2010)

Xie, G., Zeng, G., Li, R., Li, K.: Quantitative Fault-Tolerance for Reliable Workflows on
Heterogeneous IaaS Clouds. IEEE Transactions on Cloud Computing 8(4), 1223-1236
(2020)

Xiong, N., Vasilakos, A.V., Wu, J., Yang, Y.R., Rindos, A.J., Zhou, Y., Song, W., Pan,
Y.: A Self-tuning Failure Detection Scheme for Cloud Computing Service. In: 26th IEEE
International Parallel and Distributed Processing Symposium, IPDPS 2012, Shanghai, China,
May 21-25, 2012, pp. 668—679. IEEE Computer Society (2012)

Yang, R., Zhu, S., Li, Y., Gupta, I.: Medley: A Novel Distributed Failure Detector for IoT
Networks. In: Proceedings of the 20th International Middleware Conference, Middleware
’19, p. 319-331. Association for Computing Machinery, New York, NY, USA (2019)

Yi, S., Andrzejak, A., Kondo, D.: Monetary cost-aware checkpointing and migration on
amazon cloud spot instances. IEEE Transactions on Services Computing 5(4), 512-524
(2011)

Zhou, A.C., He, B., Liu, C.: Monetary cost optimizations for hosting workflow-as-a-service
in IaaS clouds. IEEE transactions on cloud computing 4(1), 34-48 (2015)

Zhou, J., Zhang, Y., Wong, W.: Fault Tolerant Stencil Computation on Cloud-Based GPU
Spot Instances. IEEE Trans. on Cloud Comput. 7(4), 1013-1024 (2019)

Zhu, X., Wang, J., Guo, H., Zhu, D., Yang, L.T., Liu, L.: Fault-Tolerant Scheduling for Real-
Time Scientific Workflows with Elastic Resource Provisioning in Virtualized Clouds. IEEE
Transactions on Parallel and Distributed Systems 27(12), 3501-3517 (2016)

