
Brief Announcement: Semantics of Eventually
Consistent Replicated Sets �

Annette Bieniusa1, Marek Zawirski1,2, Nuno Preguiça3,1, Marc Shapiro1,
Carlos Baquero4, Valter Balegas3, and Sérgio Duarte3

1 INRIA/LIP6, Paris, France
2 UPMC, Paris, France

3 CITI, Universidade Nova de Lisboa, Portugal
4 HASLab, INESC Tec and Universidade do Minho, Portugal

This paper studies the semantics of sets under eventual consistency. The set is a
pervasive data type, used either directly or as a component of more complex data
types, such as maps or graphs. Eventual consistency of replicated data supports
concurrent updates, reduces latency and improves fault tolerance, but forgoes
strong consistency (e.g., linearisability). Accordingly, several cloud computing
platforms implement eventually-consistent replicated sets [2,4].

The sequential semantics of a set are well known, and are defined by in-
dividual updates, e.g., {true}add(e){e ∈ S} (in “{pre-condition} computation
{post-condition}” notation), where S denotes its abstract state. However, the
semantics of concurrent modifications is left underspecified or implementation-
driven.

We propose the following Principle of Permutation Equivalence to express
that concurrent behaviour conforms to the sequential specification: “If all se-
quential permutations of updates lead to equivalent states, then it should also
hold that concurrent executions of the updates lead to equivalent states.” It im-
plies the following behavior, for some updates u and u′:

{P }u; u′{Q} ∧ {P }u′; u{Q′} ∧ Q ⇔ Q′ ⇒ {P }u ‖ u′{Q}
Specifically for replicated sets, the Principle of Permutation Equivalence requires
that {e �= f}add(e) ‖ remove(f){e ∈ S ∧ f /∈ S}, and similarly for opera-
tions on different elements or idempotent operations. Only the pair add(e) ‖
remove(e) is unspecified by the principle, since add(e); remove(e) differs from
remove(e); add(e). Any of the following post-conditions ensures a deterministic
result:

{⊥e ∈ S} – Error mark
{e ∈ S} – add wins
{e /∈ S} – remove wins

{add(e) >CLK remove(e) ⇔ e ∈ S} – Last Writer Wins (LWW)

where <CLK compares unique clocks associated with the operations. Note that
� This research is supported in part by ANR project ConcoRDanT (ANR-10-BLAN

0208), by ERDF, COMPETE Programme, by Google European Doctoral Fellow-
ship in Distributed Computing received by Marek Zawirski, and FCT projects
#PTDC/EIA-EIA/104022/2008 and #PTDC/EIA-EIA/108963/2008.

M.K. Aguilera (Ed.): DISC 2012, LNCS 7611, pp. 449–450, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

http://concordant.lip6.fr/

450 A. Bieniusa et al.

(a) Dynamo shopping
cart

(b) C-Set (c) OR-Set

Fig. 1. Examples of anomalies and a correct design

not all concurrency semantics can be explained as a sequential permutation; for
instance no sequential execution ever results in an error mark.

A Study of Existing Replicated Set Designs. In the past, several designs
have been proposed for maintaining a replicated set. Most of them violate the
Principle of Permutation Equivalence (Fig. 1). For instance, the Amazon Dy-
namo shopping cart [2] is implemented using a register supporting read and write
(assignment) operations, offering the standard sequential semantics. When two
writes occur concurrently, the next read returns their union. As noted by the
authors themselves, in case of concurrent updates even on unrelated elements, a
remove may be undone (Fig. 1(a)).

Sovran et al. and Asian et al. [4,1] propose a set variant, C-Set, where for
each element the associated add and remove updates are counted. The element
is in the abstraction if their difference is positive. C-Set violates the Principle
of Permutation Equivalence (Fig. 1(b)). When delivering the updates to both
replicas as sketched, the add and remove counts are equal, i.e., e is not in the
abstraction, even though the last update at each replica is add(e).

Shapiro et al. propose a replicated set design, called OR-Set, [3] that ensures
that concurrent add/remove operations commute. Unlike the others, it satisfies
the Principle of Permutation Equivalence, as illustrated in Figure 1(c). Hidden
unique tokens distinguish between different invocations of add, making it possible
to to precisely track which add operations are affected by a remove.

References
1. Aslan, K., Molli, P., Skaf-Molli, H., Weiss, S.: C-Set: a commutative replicated data

type for semantic stores. In: Int. W. on REsource Discovery, RED (2011)
2. DeCandia, G., Hastorun, D., et al.: Dynamo: Amazon’s highly available key-value

store. In: Symp. on Op. Sys. Principles, SOSP (2007)
3. Shapiro, M., Preguiça, N., Baquero, C., Zawirski, M.: Conflict-Free Replicated Data

Types. In: Défago, X., Petit, F., Villain, V. (eds.) SSS 2011. LNCS, vol. 6976, pp.
386–400. Springer, Heidelberg (2011)

4. Sovran, Y., Power, R., Aguilera, M.K., Li, J.: Transactional storage for geo-
replicated systems. In: Symp. on Op. Sys. Principles, SOSP (2011)

	Brief Announcement: Semantics of Eventually Consistent Replicated Sets

