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Problem (1) with naïve approach 
liveness of causal consistency w/o full (meta)data 

Geo-replication integrated all the way to the client machine 

Multi-versioned approach 
read stable updates of all clients + own updates 
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example execution: replicated updates and causal  dependencies 

Failover problem:  reads in NY blocked (y=7) or inconsistent (y=0?) 
Cause: non-replicated causal dependency y:=7 

Motivation 
limitations of server-centric geo-replication 

Goal 
extend geo-replication to the client machine 

Problem (2) with naïve approach 
inefficient or insufficient metadata 

Hybrid approach 
separated concerns: update identity and summary 

< < < extended scope of guarantees > > > 

app logic <-> DB 

NY 
WAN latency & instability 

app-level protocol 
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 Ad-hoc client-side caching – today’s solution plagued with issues: 
 => Error-prone application-level logic 
 => Inconsistent on partial cache misses or failures (no metadata/updates) 

Integrated solution – expectations: 
• Lower latency and improved availability for some operations 
• (Causally) consistent access to partial replicas despite faults 

 

non-replicated 
dependencies 

• Consistent access on failover vs. inconsistent in asynchronous systems 
• No added WAN latency vs. high latency in quorum-synchronous systems 
• Low staleness increase: ≤ 1% more stale reads under contention 
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Read/depend on slightly old version: 
• stable updates (> 1 server replica) 
• own recoverable updates 

Approach A 
client-assigned update id + Version Vectors encoding causal dependencies 

update lifecycle 

1. Client assigns a unique id: 
prevents duplicated update log entries in case of failures 

2a. Server assigns an alias id: 
reference for efficient summary of updates 

3. Metadata compaction 
upon eventual full replication 
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2b. Rare failure path (failover/retry): 
Assign new server id if needed 
Identify any duplicates by client id 
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id: (C1, 17) depends on: 
[C1=16, C2=5, …., Cn=3]  

C1 

Approach B 
server-assigned update id + any efficient encoding 
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depends on: 

[WA=77, NY=58]  
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Efficiency problem: 
unsustainable vector size 
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Safety problem:  >= 1 update id 
multiple execution of 
non-idempotent updates 

x+=2 ?? 


