
limited scope of guarantees

WA
x:=0

y:=7

x:=2

x++
failure

Problem (1) with naïve approach
liveness of causal consistency w/o full (meta)data

Geo-replication integrated all the way to the client machine

Multi-versioned approach
read stable updates of all clients + own updates

x:=0

x:=0 x:=2

x++

example execution: replicated updates and causal dependencies

Failover problem: reads in NY blocked (y=7) or inconsistent (y=0?)
Cause: non-replicated causal dependency y:=7

Motivation
limitations of server-centric geo-replication

Goal
extend geo-replication to the client machine

Problem (2) with naïve approach
inefficient or insufficient metadata

Hybrid approach
separated concerns: update identity and summary

< < < extended scope of guarantees > > >

app logic <-> DB

NY
WAN latency & instability

app-level protocol

Marek Zawirski1 Annette Bieniusa2 Valter Balegas3 Sérgio Duarte3 Carlos Baquero4 Marc Shapiro1 Nuno Preguiça3

1 Inria & UPMC-LIP6 2 U. Kaiserslautern 3 U. Nova de Lisboa 4 INESC Tec. & U. Minho

This research is supported in part by ANR project ConcoRDanT (ANR-10-BLAN 0208), by the Google Europe Fellowship in Distributed Computing awarded to Marek Zawirski,
by Portuguese FCT/MEC projects PEst-OE/EEI/UI0527/2011 and PTDC/EEI-SCR/1837/2012 and PhD scholarship awarded to Valter Balegas (SFRH/BD/87540/2012).

WA

 Ad-hoc client-side caching – today’s solution plagued with issues:
 => Error-prone application-level logic
 => Inconsistent on partial cache misses or failures (no metadata/updates)

Integrated solution – expectations:
• Lower latency and improved availability for some operations
• (Causally) consistent access to partial replicas despite faults

non-replicated
dependencies

• Consistent access on failover vs. inconsistent in asynchronous systems
• No added WAN latency vs. high latency in quorum-synchronous systems
• Low staleness increase: ≤ 1% more stale reads under contention

x:=0

x++

Read/depend on slightly old version:
• stable updates (> 1 server replica)
• own recoverable updates

Approach A
client-assigned update id + Version Vectors encoding causal dependencies

update lifecycle

1. Client assigns a unique id:
prevents duplicated update log entries in case of failures

2a. Server assigns an alias id:
reference for efficient summary of updates

3. Metadata compaction
upon eventual full replication

NY

recovered
by client

 partial replication

read x=2

read x=0

y:=7

x:=2 x:=0

NY x:=0

x++

missing causal
dependencies!

x++

read: y=0
 x=1

NY

rep
licatio

n

WA

failure

WA

WA

 replicate

NY failover

x++
id

NY id
WA id

NY WA
x:=1

last id

x++
id

x++
id

2b. Rare failure path (failover/retry):
Assign new server id if needed
Identify any duplicates by client id

x++
id

WA id

 partial replication (data and metadata)

…

…

WA

1
0

0
0

s

1
0

0
0

s

client : partial (meta)data

read: y=?
 x=?

rep
licatio

n

x++

id: (C1, 17) depends on:
[C1=16, C2=5, …., Cn=3]

C1

Approach B
server-assigned update id + any efficient encoding

WA
depends on:

[WA=77, NY=58]

NY

Efficiency problem:
unsustainable vector size

x++
(WA,79)

rep
licatio

n

x++
(WA,79)

x++
(NY,61)

Safety problem: >= 1 update id
multiple execution of
non-idempotent updates

x+=2 ??

