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— Speculation case-study 

★ Ticket-selling System 
— Exploiting application semantics 

★ Overheads evaluation 
& Optimizations 

★ Latency gaps between consistency 
models

➤ Application: Twissandra 
➤ Workload generated via YCSB 
➤ Clients in Ireland 
➤ Geo-replication on Amazon’s EC2

VRG
CAL

ORG

check the paper
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The Correctables abstraction enables you to: 
1. Leverage consistency models incrementally 

2. Lower latency of  strong consistency

CORRECTABLE

value1

value2

valuen

Incremental  
Consistency  
Guarantees

@adizere
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Overheads
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➤ YCSB workload, various configurations 
➤ Client in Ireland 
➤ Replicas in Virginia, Frankfurt, and Ireland
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Divergence between weak and strong consistency
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Latency gaps between consistency models
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