
Incremental Consistency Guarantees
For Replicated Objects

Rachid Guerraoui, Matej Pavlovic, Dragos-Adrian Seredinschi

Incremental Consistency Guarantees
Dragos-Adrian Seredinschi

2

replicate

SOCIAL MEDIA APPLICATION

Incremental Consistency Guarantees
Dragos-Adrian Seredinschi

Incremental Consistency Guarantees
Dragos-Adrian Seredinschi

2

replicate

SOCIAL MEDIA APPLICATION

22
20

17
Number of recent events 
on the user’s timeline

Incremental Consistency Guarantees
Dragos-Adrian Seredinschi

Incremental Consistency Guarantees
Dragos-Adrian Seredinschi

• Returns the correct data
• Latency: ~200 ms
• Can become unavailable

2

Strong Consistency

[CAP], [PACELC]

replicate

SOCIAL MEDIA APPLICATION

22
20

17

22

Number of recent events 
on the user’s timeline

Incremental Consistency Guarantees
Dragos-Adrian Seredinschi

Incremental Consistency Guarantees
Dragos-Adrian Seredinschi

• Latency: ~100 ms
• High availability
• Allows inconsistencies: can return

• Returns the correct data
• Latency: ~200 ms
• Can become unavailable

2

Strong Consistency

or or
[CAP], [PACELC]

Weak Consistency

replicate

SOCIAL MEDIA APPLICATION

22
20

17

22

2022 17

Number of recent events 
on the user’s timeline

Incremental Consistency Guarantees
Dragos-Adrian Seredinschi

Incremental Consistency Guarantees
Dragos-Adrian Seredinschi

• Latency: ~100 ms
• High availability
• Allows inconsistencies: can return

• Returns the correct data
• Latency: ~200 ms
• Can become unavailable

2

Strong Consistency

or or
[CAP], [PACELC]

Weak Consistency

replicate

SOCIAL MEDIA APPLICATION

22
20

17

22

2022 17

Number of recent events 
on the user’s timeline

Incremental Consistency Guarantees
Dragos-Adrian Seredinschi

Neither model is ideal!

Incremental Consistency Guarantees
Dragos-Adrian Seredinschi

• Latency: ~100 ms
• High availability
• Allows inconsistencies: can return

• Returns the correct data
• Latency: ~200 ms
• Can become unavailable

2

Strong Consistency

or or
[CAP], [PACELC]

Weak Consistency

replicate

SOCIAL MEDIA APPLICATION

22
20

17

22

2022 17

Number of recent events 
on the user’s timeline

Incremental Consistency Guarantees
Dragos-Adrian Seredinschi

Neither model is ideal!

We use both models.

Incremental Consistency Guarantees
Dragos-Adrian Seredinschi

3

Multiple models
1. Weak consistency  

2. Strong consistency  

100ms

300ms

20

22

Incremental Consistency Guarantees
Dragos-Adrian Seredinschi

3

Multiple models
1. Weak consistency  

2. Strong consistency  

100ms

300ms

20

22

Dynamo  
[SOSP’07]

Pileus  
[SOSP’13]

Increasingly many systems expose 
multiple consistency models:

Incremental Consistency Guarantees
Dragos-Adrian Seredinschi

3

Multiple models

1. Send multiple requests?

2. How to leverage individual responses?

3. Semantics?

4. …

1. Weak consistency  

2. Strong consistency  

100ms

300ms

20

22

Issues

Dynamo  
[SOSP’07]

Pileus  
[SOSP’13]

Increasingly many systems expose 
multiple consistency models:

Incremental Consistency Guarantees
Dragos-Adrian Seredinschi

3

Multiple models

How do you program with
★ inconsistencies?
★ multiple values?

Problem1. Send multiple requests?

2. How to leverage individual responses?

3. Semantics?

4. …

1. Weak consistency  

2. Strong consistency  

100ms

300ms

20

22

Issues

Dynamo  
[SOSP’07]

Pileus  
[SOSP’13]

Increasingly many systems expose 
multiple consistency models:

Incremental Consistency Guarantees
Dragos-Adrian Seredinschi

4

ABSTRACTION  
FOR REPLICATED OBJECTS

We
ak
 

Co
ns
is
te
nc
y

St
ro
ng
 

Co
ns
is
te
nc
y

…

SOCIAL MEDIA APPLICATION

20

17

22

??
??
 

Co
ns
is
te
nc
y

…

Incremental Consistency Guarantees
Dragos-Adrian Seredinschi

4

ABSTRACTION  
FOR REPLICATED OBJECTS

We
ak
 

Co
ns
is
te
nc
y

St
ro
ng
 

Co
ns
is
te
nc
y

…
CORRECTABLE

SOCIAL MEDIA APPLICATION

20

17

22

??
??
 

Co
ns
is
te
nc
y

…

Incremental Consistency Guarantees
Dragos-Adrian Seredinschi

4

ABSTRACTION  
FOR REPLICATED OBJECTS

We
ak
 

Co
ns
is
te
nc
y

St
ro
ng
 

Co
ns
is
te
nc
y

…
CORRECTABLE

Incremental  
Consistency  
Guarantees (ICG)

provides

SOCIAL MEDIA APPLICATION

20

17

22

??
??
 

Co
ns
is
te
nc
y

…

Incremental Consistency Guarantees
Dragos-Adrian Seredinschi

Correctables / Design

5

PROMISE

resolve 
asynchronously

➤ Starting point: Promises
➤ Placeholders for values
➤ Becoming mainstream

value

Incremental Consistency Guarantees
Dragos-Adrian Seredinschi

Correctables / Design

5

CORRECTABLEPROMISE

resolve 
asynchronously

➤ Starting point: Promises
➤ Placeholders for values
➤ Becoming mainstream

value

value1

value2

valuen

Incremental Consistency Guarantees
Dragos-Adrian Seredinschi

Correctables / Design

5

CORRECTABLEPROMISE

resolve 
asynchronously

PROGRESSIVELY  
STRONGER CONSISTENCY

(INCREMENTAL)

PROGRESSIVELY
HIGHER LATENCY

➤ Starting point: Promises
➤ Placeholders for values
➤ Becoming mainstream

value

value1

value2

valuen

Incremental Consistency Guarantees
Dragos-Adrian Seredinschi

Consistency Models are Complementary

6

C
on

si
st
en

cy

Weak

Strong

LowHigh Performance
Eventual

Linearizable

Sequential

Causal

(Ideal protocol)

(Worst protocol)

INC
REM

ENT
AL

Weak consistency:
★ Fast
★ (Often correct)

Strong consistency:
★ Slower
★ (Correct with certainty)Weak  

Consistency

Strong  
Consistency

Incremental Consistency Guarantees
Dragos-Adrian Seredinschi

Consistency Models are Complementary

6

C
on

si
st
en

cy

Weak

Strong

LowHigh Performance
Eventual

Linearizable

Sequential

Causal

(Ideal protocol)

(Worst protocol)

INC
REM

ENT
AL

Weak consistency:
★ Fast
★ (Often correct)

Strong consistency:
★ Slower
★ (Correct with certainty)Weak  

Consistency

Strong  
Consistency

So what?

Incremental Consistency Guarantees
Dragos-Adrian Seredinschi

Consistency Models are Complementary

6

C
on

si
st
en

cy

Weak

Strong

LowHigh Performance
Eventual

Linearizable

Sequential

Causal

(Ideal protocol)

(Worst protocol)

INC
REM

ENT
AL

Weak consistency:
★ Fast
★ (Often correct)

Strong consistency:
★ Slower
★ (Correct with certainty)Weak  

Consistency

Strong  
Consistency

So what?
Latency optimizations

Incremental Consistency Guarantees
Dragos-Adrian Seredinschi

7

Speculating with Correctables

SOCIAL MEDIA APPLICATION

read  
timeline

CORRECTABLE

Lower latency of strong consistency

Incremental Consistency Guarantees
Dragos-Adrian Seredinschi

7

Speculating with Correctables

SOCIAL MEDIA APPLICATION

We
ak
 

Co
ns
is
te
nc
y

value1

St
ro
ng
 

Co
ns
is
te
nc
y

value2

read  
timeline

CORRECTABLE

Lower latency of strong consistency

Latency gap: ~100 ms

Incremental Consistency Guarantees
Dragos-Adrian Seredinschi

7

Speculating with Correctables

SOCIAL MEDIA APPLICATION

We
ak
 

Co
ns
is
te
nc
y

value1

St
ro
ng
 

Co
ns
is
te
nc
y

value2

read  
timeline

Speculative  
execution

• value1 is often correct 

• Speculatively execute any further steps 
e.g., prefetch dependent data

[Existential Consistency. SOSP’15] 
[PBS. VLDB 5(8)’12]

Verify based on
value2

CORRECTABLE

Lower latency of strong consistency

Latency gap: ~100 ms

Incremental Consistency Guarantees
Dragos-Adrian Seredinschi

7

Speculating with Correctables

SOCIAL MEDIA APPLICATION

We
ak
 

Co
ns
is
te
nc
y

value1

St
ro
ng
 

Co
ns
is
te
nc
y

value2

read  
timeline

Speculative  
execution

• value1 is often correct 

• Speculatively execute any further steps 
e.g., prefetch dependent data

[Existential Consistency. SOSP’15] 
[PBS. VLDB 5(8)’12]

Verify based on
value2

CORRECTABLE

Lower latency of strong consistency

Latency gap: ~100 ms

Incremental Consistency Guarantees
Dragos-Adrian Seredinschi

Strongly-consistent timeline

Fetch timeline items
200 ms

100 ms

Traditional operation:

8

300ms

Incremental Consistency Guarantees
Dragos-Adrian Seredinschi

Strongly-consistent timeline

Fetch timeline items
200 ms

100 ms

Traditional operation:

8

Speculative operation with ICG:

value2

100 ms

value1

100 ms

100 ms

300ms

Fetch timeline items

Incremental Consistency Guarantees
Dragos-Adrian Seredinschi

Strongly-consistent timeline

Fetch timeline items
200 ms

100 ms

Traditional operation:

8

Speculative operation with ICG:

value2

value1  

matches 

value2
100 ms

value1

100 ms

100 ms

yes

300ms

200ms

Fetch timeline items

Incremental Consistency Guarantees
Dragos-Adrian Seredinschi

Strongly-consistent timeline

Fetch timeline items
200 ms

100 ms

Traditional operation:

8

Speculative operation with ICG:

value2

value1  

matches 

value2
100 ms

value1

100 ms

100 ms

yes

no

100 ms
Re-fetch

300ms

300ms

200ms

Fetch timeline items

Incremental Consistency Guarantees
Dragos-Adrian Seredinschi

Speculation case-study

9

➤ Application: Twissandra
➤ Workload generated via YCSB
➤ Clients in Ireland
➤ Geo-replication on Amazon’s EC2

VRG
CAL

ORG

Incremental Consistency Guarantees
Dragos-Adrian Seredinschi

Speculation case-study

9

★ Advertising System 
— Speculation case-study

★ Ticket-selling System 
— Exploiting application semantics

★ Overheads evaluation 
& Optimizations

★ Latency gaps between consistency 
models

➤ Application: Twissandra
➤ Workload generated via YCSB
➤ Clients in Ireland
➤ Geo-replication on Amazon’s EC2

VRG
CAL

ORG

check the paper

Incremental Consistency Guarantees
Dragos-Adrian Seredinschi

Decreasing latency of strong consistency

10

Workload A (50:50 read/write) Workload C (read-only)

What is the  
latency of the fetch_timeline() operation?

Workload B (95:5 read/write)

Incremental Consistency Guarantees
Dragos-Adrian Seredinschi

Decreasing latency of strong consistency

10

Workload A (50:50 read/write) Workload C (read-only)

What is the  
latency of the fetch_timeline() operation?

Workload B (95:5 read/write)

Baseline

Read using a quorum of 2/3 replicas vs.
ICG
1. Weak: Read with 1/3 replicas
2. “Strong:” Read with quorum of 2/3 replicas

Incremental Consistency Guarantees
Dragos-Adrian Seredinschi

Decreasing latency of strong consistency

10

Workload A (50:50 read/write) Workload C (read-only)

What is the  
latency of the fetch_timeline() operation?

Workload B (95:5 read/write)

Baseline

Read using a quorum of 2/3 replicas vs.
ICG
1. Weak: Read with 1/3 replicas
2. “Strong:” Read with quorum of 2/3 replicas

Incremental Consistency Guarantees
Dragos-Adrian Seredinschi

 0

 50

 100

 150

 200

 250

 0 50 100 150 200 250 300

L
a
te

n
cy

 (
m

s)

Workload A

A
d

s
S

ys
te

m
T

w
is

sa
n

d
ra

C2 (R=2) CC2 (R=1,2)

 0

 50

 100

 150

 200

 250

 0 50 100 150 200 250 300
Throughput (ops/sec)

Workload B

A
d

s
S

ys
te

m
T

w
is

sa
n

d
ra

 0

 50

 100

 150

 200

 250

 0 50 100 150 200 250 300

Workload C

A
d

s
S

ys
te

m
T

w
is

sa
n

d
ra

 0

 150

 300

 450

 600

 0 50 100 150 200 250 300

L
a
te

n
cy

 (
m

s)
A

d
s

S
ys

te
m

T
w

is
sa

n
d

ra

 0

 150

 300

 450

 600

 0 50 100 150 200 250 300
Throughput (ops/sec)

A
d

s
S

ys
te

m
T

w
is

sa
n

d
ra

 0

 150

 300

 450

 600

 0 50 100 150 200 250 300

A
d

s
S

ys
te

m
T

w
is

sa
n

d
ra

Decreasing latency of strong consistency

10

Workload A (50:50 read/write) Workload C (read-only)

What is the  
latency of the fetch_timeline() operation?

Workload B (95:5 read/write)

Baseline

Read using a quorum of 2/3 replicas vs.
ICG
1. Weak: Read with 1/3 replicas
2. “Strong:” Read with quorum of 2/3 replicas

Baseline

ICG

Incremental Consistency Guarantees
Dragos-Adrian Seredinschi

 0

 50

 100

 150

 200

 250

 0 50 100 150 200 250 300

L
a
te

n
cy

 (
m

s)

Workload A

A
d

s
S

ys
te

m
T

w
is

sa
n

d
ra

C2 (R=2) CC2 (R=1,2)

 0

 50

 100

 150

 200

 250

 0 50 100 150 200 250 300
Throughput (ops/sec)

Workload B

A
d

s
S

ys
te

m
T

w
is

sa
n

d
ra

 0

 50

 100

 150

 200

 250

 0 50 100 150 200 250 300

Workload C

A
d

s
S

ys
te

m
T

w
is

sa
n

d
ra

 0

 150

 300

 450

 600

 0 50 100 150 200 250 300

L
a
te

n
cy

 (
m

s)
A

d
s

S
ys

te
m

T
w

is
sa

n
d

ra

 0

 150

 300

 450

 600

 0 50 100 150 200 250 300
Throughput (ops/sec)

A
d

s
S

ys
te

m
T

w
is

sa
n

d
ra

 0

 150

 300

 450

 600

 0 50 100 150 200 250 300

A
d

s
S

ys
te

m
T

w
is

sa
n

d
ra

Decreasing latency of strong consistency

10

Workload A (50:50 read/write) Workload C (read-only)

What is the  
latency of the fetch_timeline() operation?

★ Latency decrease by 40%

★ Throughput drop by 6%

★ Same consistency model (2/3 replicas)

Workload B (95:5 read/write)

Baseline

Read using a quorum of 2/3 replicas vs.
ICG
1. Weak: Read with 1/3 replicas
2. “Strong:” Read with quorum of 2/3 replicas

Baseline

ICG

Incremental Consistency Guarantees
Dragos-Adrian Seredinschi

11

The Correctables abstraction enables you to:
1. Leverage consistency models incrementally

2. Lower latency of strong consistency

CORRECTABLE

value1

value2

valuen

Incremental  
Consistency  
Guarantees

@adizere

Conclusion

backup slides

Incremental Consistency Guarantees
Dragos-Adrian Seredinschi

Speculation // Syntactic sugar

13

Incremental Consistency Guarantees
Dragos-Adrian Seredinschi

Legacy code vs. Correctables

14

semantics

execution
details

Correctable

Incremental Consistency Guarantees
Dragos-Adrian Seredinschi

Legacy code vs. Correctables

14

semantics

execution
details

Correctable

Incremental Consistency Guarantees
Dragos-Adrian Seredinschi

Overheads

➤ Cassandra
➤ YCSB workload, various configurations
➤ Client in Ireland
➤ Replicas in Virginia, Frankfurt, and Ireland

15

 0.8
 1

 1.2
 1.4
 1.6
 1.8

 2
 2.2
 2.4

30 60 120

180

240

300

Ef
fic

ie
nc

y
(k

B/
op

)

Workload A

C1

C1
CC2

CC2
*CC2

*CC2

#Total client threads

Latest distribution:
Zipfian distribution:

+27%

+77% +15%

+90%

30 60 120

180

240

300

Workload B

#Total client threads

Latest distribution:
Zipfian distribution:

+27%

+77% +15%

+90%

Incremental Consistency Guarantees
Dragos-Adrian Seredinschi

Overheads

➤ Cassandra
➤ YCSB workload, various configurations
➤ Client in Ireland
➤ Replicas in Virginia, Frankfurt, and Ireland

15

 0.8
 1

 1.2
 1.4
 1.6
 1.8

 2
 2.2
 2.4

30 60 120

180

240

300

Ef
fic

ie
nc

y
(k

B/
op

)

Workload A

C1

C1
CC2

CC2
*CC2

*CC2

#Total client threads

Latest distribution:
Zipfian distribution:

+27%

+77% +15%

+90%

30 60 120

180

240

300

Workload B

#Total client threads

Latest distribution:
Zipfian distribution:

+27%

+77% +15%

+90%

 0
 2
 4
 6
 8

 10
 12
 14
 16

1 2 4 6 8 10 12Ef
fic

ie
nc

y
(K

B/
op

)

 ZooKeeper Correctable ZooKeeper

Clients

500 tickets 1000 tickets

-71%

-44%

-81%

-60%

1 2 4 6 8 10 12
Clients

500 tickets 1000 tickets

-71%

-44%

-81%

-60%

➤ ZooKeeper queue implementation
➤ Wasteful implementation (by default)
➤ We were able to improve  

— negative overhead

500 elements 1000 elements

Incremental Consistency Guarantees
Dragos-Adrian Seredinschi

Exploiting application semantics

➤ Ticket selling application
➤ Implemented through a ZooKeeper queue
➤ Buy ticket = dequeue operation

16

Ticket 1 Ticket 2 … Ticket 500

update

close

ticket X

ticket Y | NULL

(weak)

(strong)

if (X > threshold) 
 confirm() 
else 
 wait for strong

if (! NULL) 
 confirm()

invoke dequeue()

Incremental Consistency Guarantees
Dragos-Adrian Seredinschi

Exploiting application semantics

➤ Ticket selling application
➤ Implemented through a ZooKeeper queue
➤ Buy ticket = dequeue operation

16

Ticket 1

 0

 100

 200

 300

 400 420 440 460 480 500L
a

te
n

cy
 t

o
 b

u
y

tic
ke

t
 (

m
se

c)

Ticket number

Correctable ZooKeeper ZooKeeper

Last 20
 tickets

Ticket 2 … Ticket 500

update

close

ticket X

ticket Y | NULL

(weak)

(strong)

if (X > threshold) 
 confirm() 
else 
 wait for strong

if (! NULL) 
 confirm()

invoke dequeue()

Incremental Consistency Guarantees
Dragos-Adrian Seredinschi

Divergence between weak and strong consistency

17

 0
 5

 10
 15
 20
 25
 30

30 60 120 180 240 300

%
D

iv
e

rg
e

n
ce

#Total client threads

Workload A-Latest
Workload A-Zipfian

Workload B-Latest
Workload B-Zipfian

➤ Extremely high
➤ Unusual

0.1% — 5% typical range}

Incremental Consistency Guarantees
Dragos-Adrian Seredinschi

Latency gaps between consistency models

18

 0
 50

 100
 150
 200
 250

 0 200 400 600 800 1000

La
te

nc
y

(m
s)

Workload A (50:50 read/write)
C1 (R=1) C2 (R=2) CC2 preliminary (R=1) CC2 final (R=2)

 0
 50

 100
 150
 200
 250

 0 200 400 600 800 1000
Throughput (ops/sec)

Workload B (95:5 read/write)

 0
 50

 100
 150
 200
 250

 0 200 400 600 800 1000

Workload C (read-only)

 0

 50

 100

 150

Av
er

ag
e

R
ea

d
 L

at
en

cy
 (m

s)

CC preliminary
CC final

C
99th %ile latency

R=3 R=2 R=1

La
te

nc
y

ga
p

 0

 50
 100

 150
 200

Av
er

ag
e

La
te

nc
y

(m
s)

CZK preliminary
CZK final

ZK
99th %ile latency

Leader in IRL Leader in VRG

Follower
 (FRK)

Leader
 (IRL)

Follower
 (IRL)

Leader
(VRG)

 Client
connection:

Incremental Consistency Guarantees
Dragos-Adrian Seredinschi

19

value1

?

value2

Efficiency of Multiple Responses

CORRECTABLE

read  
timeline

SOCIAL MEDIA APPLICATION

Incremental Consistency Guarantees
Dragos-Adrian Seredinschi

Binding

Request

Replicated
Storage

Response
(final)

Response
(preliminary)

Weak consistency Strong consistency

Coordination

19

value1

?

value2

Efficiency of Multiple Responses

CORRECTABLE

read  
timeline

SOCIAL MEDIA APPLICATION

Incremental Consistency Guarantees
Dragos-Adrian Seredinschi

Binding

Request

Replicated
Storage

Response
(final)

Response
(preliminary)

Weak consistency Strong consistency

Coordination

19

value1

(quorum gathering)

value2

Efficiency of Multiple Responses

CORRECTABLE

read  
timeline

SOCIAL MEDIA APPLICATION

Incremental Consistency Guarantees
Dragos-Adrian Seredinschi

Correctables / Library

20

Application

Cache

Storage

binding binding binding binding

Correctables
LIBRARY

RPC

invoke

API

(Weak / Strong)

RPC

C
o

n
si

st
e
n
c
y-

b
a
se

d

in
te

rf
a
c
e

S
ys

te
m

-s
p

e
c
ifi

c

in
te

rf
a
c
e

Desktop
Application

Web
Frontend

Mobile
App

Caching
Daemon

Correctable

