
MAINTAINING SQL INVARIANTS IN WEAKLY 
CONSISTENT DATABASES

Nuno Preguiça (NOVA LINCS, FCT/Universidade NOVA de Lisboa)

Joint work with:
Valter Balegas, Cheng Li (MPI, now Oracle), João Sousa, David Lopes, Sérgio Duarte, Carla 
Ferreira, João Leitão, Allen Clement (MPI, now Google), Viktor Vafeiadis (MPI), Rodrigo 
Rodrigues (now Inesc-Id/IST)



INTERNET SERVICES NOWADAYS

• Services operate on a global scale.

• An unprecedented number of people are using 
Internet services.

• Systems use geo-replication for low latency 
and high availability.
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create table player( id varchar(20), primary key id)

create table tournament( id varchar(20), primary key id)

create table pt( p varchar(20), t varchar(20), foreign key (p) REFERENCES 
player (id), foreign key (t) REFERENCES tournament (id))
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OUTLINE

• Context / problem
• First take: Sieve
• Second take: SQL IPA
• Final remarks
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convergence

Invariant 
preservation

Blue ops: local, fast, weakly consistent

Red ops: global, slow, strongly consistent
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Good performance obtained if blue ops dominate op space
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CRDT Annotation Example

@AUSET CREATE TABLE BankAccount(
id INT(11) NOT NULL,

@NUMDELTA balance INT(11) default 0,
@LWW name char(60) default NULL,

PRIMARY KEY (id)
) ENGINE=InnoDB
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Limitations of Sieve

• Operations that may violate the invariant need 
to be red/coordinated => slow
– Acquiring reservation/token (Indigo/CISE)

• Static analysis of complete application(s)
– Changes in applications require rerunning the 

analysis process
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Goal: maintain invariants while avoiding 
coordination
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delete from tournament where id = ’A’ 

delete cascade from PT where t = ’A’
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Other invariants

• Primary key (uniqueness)
– Split keyspace

• Check constraint
– E.g. stock int CHECK (stock >= 0)
– Solved using bounded counter (escrow)
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Limitations of Sieve

• Operations that may violate the invariant need 
to be blue/coordinated => slow
– Acquiring reservation/token (Indigo/CISE)

• Static analysis of complete application(s)
– Changes in applications require rerunning the 

analysis process
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Goal: “modify” operations in runtime.
Use schema definition.
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• Final remarks
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Status

• Implementing prototype on top of Antidote 
database

• Runtime solution equivalent to static solution 
implemented in IPA
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Impact of additional updates
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TOURNAMENT
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TOURNAMENT: OPERATIONS LATENCY
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Final remarks

• SQL schema allows to define constraints
• First approach
– Coordinate on operations that may break invariants

• Second approach
–Maintain invariants without coordination (or 

minimizing coordination)
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QUESTIONS?

Valter Balegas – NOVA LINCS, FCT-UNL - Putting Consistency Back Into Eventual Consistency @ Eurosys'15 49


