

WREN: A Fast and Scalable Transactional Causally Consistent Geo-Replicated Key-Value Store

<u>Diego Didona</u>, Kristina Spirovska, Willy Zwaenepoel RainbowFS workshop Paris, May 3rd

Outline

Geo-replicated partitioned key-value data store

Consistency

Consistency Guarantees

Causal Consistency

Transactional Causal Consistency

- Transactions read from a **causally consistent snapshot**
- Transactions updates are visible **atomically** in a DC

Outline

Limitations of State-of-the-art Systems

Dependency tracking

• Metadata scalability

Update timestamping

• Clock skew induced latency

Main Contributions

1. Constant Metadata

2. Low Latency

Hybrid Stable Time (HST)

A novel dependency tracking and stabilization protocol

Addresses metadata scalability Hybrid Logical/ Physical Clocks

Loose synchronization of physical clocks without suffering from clock skew

Addresses clock skew induced latency

Main Contributions

1. Constant Metadata

2. Low Latency

Hybrid Stable Time (HST)

A novel dependency tracking and stabilization protocol

Hybrid Logical/ Physical Clocks

Loose synchronization of physical clocks without suffering from clock skew

Hybrid Stable Time (HST)

Only two scalar timestamps

Local Dependency Time

Tracks the dependencies on local items

Remote Stable Time

Summarizes dependencies on remote items

Existing dependency tracking methods

Dependency vectors

Cure[ICDCS'16]

- Fresh, non-blocking snapshot
- Metadata size O(#DCs)

Single timestamp

GentleRain[SOCC'14]

- + Metadata size O(1)
- Inter DC sync to install snapshot

Single Scalar: GentleRain

Dependency vectors: Cure

Dependency vectors: Cure

Local and Remote Time: Wren

Local and Remote Time: Wren

Hybrid Stable Time (HST)

•Only two scalar timestamps

Local Dependency Time

Tracks the dependencies on local items

Remote Stable Time

Summarizes dependencies on remote items

Remote Stable Time (RST)

- •Computed periodically
- Lower bound on updates from remote DCs
- •No additional inter DCs sync

HST Benefits & Trade-off

• Hits sweet spot in the meta-data size vs performance spectrum

Main Contributions

1. Constant Metadata

2. Low Latency

Hybrid Stable Time (HST)

A novel dependency tracking and stabilization protocol

Hybrid Logical/ Physical Clocks

Loose synchronization of physical clocks without suffering from clock skew

Existing update timestamping methods

Physical Clocks PC

Logical Clocks LC

- + (Loose) clock synchr.
 enables efficient
 dependency tracking
 - Clock skew introduces uncertainty (latencies)

 Capture dependency among events easily

No syhncronization
 makes dependency
 tracking more costly

Hybrid Logical/Physical clocks (HCL)

- Logical Physical Clocks, OPODIS'14
- Best of both worlds
 - Captures the causality relationship
 - Inherits loose synchronization of PC
 - No clock skew as LC

Hybrid Logical/Physical clocks (HCL)

Clock skew problem **Invariant**: timestamps must reflect causality Client's dep. time < x2's update time Client $Write(x_2)$ р Xa BLOCK $< \bigcirc$ Wait until physical clock client dependency time

Clock skew solution

Invariant: timestamps must reflect causality Client's dep. time < x2's update time Client Write(x₂)

hybrid clock

client dependency time

Clock skew solution

Availability

Outline

Related Systems

		Low Latency	Metadata	Availability (Transact.)	Snapshot freshness
Cure [ICDCS'16]		Clock skew	#DCs	Yes	Higher
	GentleRain [SOCC'14]	Clock skew Inter-DC syn	O(1)	Νο	Lower
	Occult [NSDI'17]	Inter DC sync	O(#DCs)	Νο	Highest
	Wren	Yes	O(1)	Yes	Lower

Our work: Wren

The first transactional causally consistent geo-replicated system that at the same time has:

Constant metadata

Low latency

Always-available

Summary

- Wren: The first transactional causally consistent geo-replicated system that at the same time has:
 - Constant metadata
 - Hybrid Stable Time
 - Low latency
 - Hybrid Logical/Physical Clocks
 - Always-available

