
Providing Support for Safe Software Architecture Transformations

Olivier Barais∗, Julia Lawall†, Anne-Françoise Le Meur∗ and Laurence Duchien∗

∗Jacquard project, INRIA/LIFL
Universit́e des Sciences et Technologies de Lille

59655 Villeneuve d’Ascq Cedex, France
{barais, lemeur, duchien}@lifl.fr

†DIKU, University of Copenhagen
2100 Copenhagen Ø, Denmark

julia@diku.dk

1. Introduction

Software architecture is a key concept in the design of a
complex system. An architecture models the structure and
behavior of the system, including the software elements and
the relationships between them. While architectures were
originally specified informally, recent years have seen the
creation of a number of Architecture Description Languages
(ADLs) [4]. ADLs are designed around the dimensions of
composition and interaction, allowing the architect to intro-
duce new concerns by constructing and combining increas-
ingly complex elements.

Simple composition and interaction are sufficient as long
as new elements match the interface provided by the exist-
ing architecture. Some concerns, however, such as security,
crosscut the software architecture and cannot be expressed
in a modular way. To integrate such concerns, the architect
must invasively modify the architecture elements and the
connections between them, at all points affected by the con-
cern. These modifications are low-level, tedious, and error-
prone, making the integration of new concerns difficult.

To address the complexity of integrating a new con-
cern into a software architecture, we have developed the
TranSAT framework. Starting with a core architecture con-
taining some business concerns, the architect uses TranSAT
to incrementally add all needed technical and business con-
cerns. Inspired by Aspect Oriented Programming [3],
TranSAT isolates the description of each concern in a sep-
arate architecture construct, thepattern, that is automat-
ically integrated with the core software architecture by a
weaver. This pattern consists of a new architecture frag-
ment to be integrated and a description of where it can be
applied, as well as a sequence of transformation rules de-
scribing modifications to the existing architecture.

In a previous paper, we have presented the global design
of TranSAT [2]. This paper identifies some of the problems
that an architect may encounter when manually integrating
a new concern, and then gives an overview of the features
of the TranSAT framework that contribute to ensuring the
consistency of software architectures created through suc-
cessive automatic concern integrations.

2. Some Manual Concern Integration Issues

Integrating a new concern into an existing software archi-
tecture involves modifying the component structure, behav-
ior, and interfaces. This task is highly error prone, as many
modifications may be required. We examine this issue in the
context of the SafArchie component model [1], which is the
target of TranSAT and contains many standard features. In
particular, a SafArchie architecture consists of a collection
of possibly nested components, combined with a collection
of bindings that connect components at ports and represent
imported and exported operations. Additionally, each com-
ponent is associated with an input/output automaton that de-
scribes its behavior in terms of these operations. In such a
component model, integrating a new concern can have both
a local impact on the modified elements and a global im-
pact on the consistency of the architecture as a whole.

Local impact SafArchie places a number of requirements
on the various architectural elements. For example, a port
must contain at least one operation, must be bound to ex-
actly one other port, in some other component, and this
other port must provide compatible operations. When in-
tegrating a new concern, an architect typically adds bind-
ings between the components of the new concern and the
components of the existing architecture. These new bind-
ings must respect the requirements on ports.

Modifications to the behavior automaton associated with
each component are particularly error prone, because the
automaton must be kept coherent with the other elements
of the component and because of the complexity of the au-
tomaton structure. All of the operations associated with the
ports of a component must appear somewhere in the com-
ponent’s behavior automaton. As SafArchie separates the
structural and behavioral descriptions, it is easy to overlook
one when adding or removing operations from the other.
An automaton must also describe a meaningful behavior.
Checking the behavior requires tracing through all of the
paths of the automaton, which can be difficult to do man-
ually. Finally, removing an operation requires removing it
from wherever it appears in the automaton. This may in-
volve reorganizing the automaton to eliminate paths that are

1



no longer meaningful, which can be a complex transforma-
tion.

Global impact So that the application can run without
deadlock, it must be possible to synchronize the behavior
of each component with that of its neighbors. Any change
in the behavior of a single component can affect this syn-
chronization, which can in turn affect the neighbors’ syn-
chronization with the rest of the architecture. The interde-
pendencies between behaviors can make the source of any
error difficult to determine.

3. Safe Software Architecture Integration

In TranSAT, a concern is represented as aplan, a join point
mask, and a set oftransformation rules. The plan describes
the structure and behavior of the new concern. The join
point mask defines the structural and behavioral require-
ments that the basis plan must satisfy so that the new con-
cern can be integrated. The transformation rules specify the
means of integrating the new plan with the basis plan. In
these terms, the issues identified in Section 2 suggest what
can go wrong in the transformations that connect the new
architecture fragment specified by the plan to the exist-
ing architecture fragment specified by the join point mask.
TranSAT prevents these errors through a combination of
constraints on the transformation language and static and
dyanmic verifications.

Restrictions on the transformation languageMany of
the local errors identified in Section 2 occur when a new
element affects multiple elements in the existing architec-
ture. The TranSAT transformation language prevents some
of these errors by providing abstractions that update all af-
fected elements at once, in a consistent manner. For exam-
ple, replacing an operation in a port requires updating both
the port structure and the automaton of the associated com-
ponent. Consequently, the transformation language com-
bines both in a singlereplace transformation operation.

Static verifications Other local properties are affected by
multiple transformation steps, and thus ensuring these prop-
erties requires static analysis of the relationships between
transformation operations. As an example, we consider
the requirement that a port contain at least one operation.
This property is affected by the totality of the transforma-
tions that add or remove an operation from the given port.
TranSAT statically simulates the execution of the transfor-
mation rules on the various elements identified by the plan
and the join point mask. At the end of the analysis, every
port must be proved to have at least one operation.

Dynamic verifications Because the join point mask does
not describe the entire basis architecture, the information in
a pattern is not sufficient to ensure that the behaviors of the
various components of the resulting architecture can be syn-
chronized. Indeed, adding new components and behaviors

to a fragment of an architecture can change the synchro-
nization at the interface of the fragment, and thus have an
effect on the synchronization of the rest of the architecture.
The use of TranSAT localizes the modifications to a spec-
ified fragment of the existing architecture. Resynchroniza-
tion at transformation time starts from the affected fragment
and works outward until reaching a composite for which the
interface is structurally unchanged and the new automaton
is bisimilar to the one computed before the transformation.

4. Assessment and Future Work

When an architecture is updated manually, it is only pos-
sible to verify its consistency once the transformation is
complete. Thus, if an error is detected, the architect has to
manually retrace his work to separate the correct modifi-
cations from the erroneous ones. The language restrictions
and static verifications of TranSAT make it possible to en-
sure many safety propertiesa priori, before the existing ar-
chitecture is modified. Although the remaining properties
are verified dynamically during the transformation process,
TranSAT records enough information to allow it to roll back
to the untransformed version if errors are detected. These
features allow the architect to easily experiment with new
variants and make it possible to use a pattern provided by a
third party developer with confidence that the concern will
be integrated correctly.

Currently, TranSAT targets SafArchie, and thus the ver-
ifications associated with the transformation process are
mainly derived from the constraints imposed by the Saf-
Archie model. In future work, we would like to decouple
TranSAT from SafArchie, to target other ADLs, guided by
their safety requirements.

References

[1] O. Barais and L. Duchien. SafArchie studio: An ArgoUML
extension to build safe architectures. In Pierre Dissaux,
Mamoun Filali Amine, and Pierre Michel, editors,Architec-
ture Description Languages, pages 85–100. Springer, 2005.

[2] O. Barais, L. Duchien, and A.-F. Le Meur. A framework to
specify incremental software architecture transformations. In
31st EUROMICRO Conference on Software Engineering and
Advanced Applications (SEAA), pages 62–69. IEEE Computer
Society, September 2005.

[3] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes,
J-M. Loingtier, and J. Irwin. Aspect-Oriented Programming.
In Mehmet Akcsit and Satoshi Matsuoka, editors,Proceed-
ings ECOOP, volume 1241, pages 220–242. Springer-Verlag,
1997.

[4] N. Medvidovic and R. N. Taylor. A classification and com-
parison framework for software architecture description lan-
guages.IEEE Trans. Softw. Eng., 26(1):70–93, 2000.

2


