
SmPL: A Domain-Specific Language for
Specifying Collateral Evolutions in Linux Device Drivers

Yoann Padioleau∗

Ecole des Mines de Nantes

Yoann.Padioleau@emn.fr

Julia L. Lawall

DIKU, University of Copenhagen

julia@diku.dk

Gilles Muller

Ecole des Mines de Nantes

Gilles.Muller@emn.fr

Collateral evolutions are a pervasive problem in large-scale
software development. Such evolutions occur when an evo-
lution that affects the interface of a generic library entails
modifications,i.e., collateral evolutions, in all library clients.
Performing these collateral evolutions requires identifying
the affected files and modifying all of the code fragments in
these files that in some way depend on the changed interface.

We have studied the collateral evolution problem in the
context of Linux device drivers [1]. Collateral evolution is
a significant problem in this context because device drivers
make up over half of the Linux source code and are highly
dependent on the kernel and driver support libraries for func-
tions and data structures. Our EuroSys study [1] has shown
that from one version of Linux to the next, collateral evolu-
tions can account for up to 35% of the lines modified in such
code. Moreover, those collateral evolutions may be complex,
entailing substantial code reorganizations.

Currently, collateral evolutions in Linux are mostly done
manually using a text editor, or with tools such assed. The
large number of Linux drivers, and complexity of the col-
lateral evolutions, however, implies that these approaches
are time-consuming and unreliable, leading to subtle er-
rors when modifications are not done consistently. To ad-
dress these problems, we propose a transformation language,
SmPL,1 to specify collateral evolutions. Because Linux pro-
grammers are used to exchange, read, and manipulate pro-
gram modifications in terms of patches, we have built our
language around the idea and syntax of a patch, extending
patches tosemantic patches.

Two important characteristics of semantic patches are:

• Automation: they can be applied automatically, and con-
sistently. A single small semantic patch can modify hun-
dreds of device drivers, at thousands of code sites.

• Documentation: they serve as a communication medium
for all the actors involved in a collateral evolution be-
cause they document the collateral evolution formally
and concisely.

We have already written 62 semantic patches. They cover
the full taxonomy introduced in our EuroSys study.

∗Contact author. No student authors.
1 SmPL is the acronym for “Semantic Patch Language” and is pronounced
“sample” in Danish, and “simple” in French.

A SmPL sample In Linux 2.5.71, collateral evolutions
were performed in the “procinfo” functions of the SCSI
drivers. An extract of a semantic patch specifying these col-
lateral evolutions is as follows.
@@
struct SHT sht; local function proc_info_func;
identifier buffer, start, offset, length, inout, hostptr, hostno;
@@

sht.proc_info = &proc_info_func;
...
proc_info_func (

+ struct Scsi_Host *hostptr,
char *buffer, char **start, off_t offset, int length,

- int hostno,
int inout) {

...
- struct Scsi_Host *hostptr;

...
- hostptr = scsi_host_hn_get(hostno);

...
- if (!hostptr) { ... }

...
- scsi_host_put(hostptr);

...
}

The extract begins by declaring a set of metavariables
between@@, that match any terms of the specified form.
The rest of the extract specifies how to transform the driver
code. As in a patch file, terms to remove and to add are
indicated by- and+, respectively. The operator... indi-
cates an arbitrary code sequence. The SmPL engine matches
this specification to driver code modulo a set of isomor-
phisms;e.g. if(!hostptr) also matches code written as
if(hostptr==NULL). Furthermore, sequences are matched
against the control-flow graph rather than the syntax tree.
These features enhance the genericity of a semantic patch.

Is SmPL simple? A semantic patch describes a collateral
evolution primarily in terms of ordinary C code. Thus a rule
developer can often construct a semantic patch by copying
and modifying existing driver code. Furthermore, a driver
maintainer who wants to apply a semantic patch can easily
understand its intent.

We are currently implementing the SmPL compiler. Work
is also underway on using SmPL to specify the complete set
of collateral evolutions required to update drivers from one
version of Linux to a subsequent one.

[1] Y. Padioleau, J. L. Lawall, and G. Muller. Understanding
collateral evolution in Linux device drivers. InThe first ACM
SIGOPS EuroSys conference, Leuven, Belgium, 2006.

