SmPL: A Domain-Specific Language for

Specifying Collateral Evolutions in Linux Device Drivers*

Yoann Padioleau
Ecole des Mines de Nantes
INRIA, LINA
44307 Nantes cedex 3, France
Yoann.Padioleau@emn.fr

Abstract

Collateral evolutions are a pervasive problem in large-
scale software development. Such evolutions occur
when an evolution that affects the interface of a
generic library entails modifications, i.e., collateral
evolutions, in all library clients. Performing these
collateral evolutions requires identifying the affected
files and modifying all of the code fragments in these
files that in some way depend on the changed inter-
face.

We have studied the collateral evolution problem in
the context of Linux device drivers. Currently, col-
lateral evolutions in Linux are mostly done manually
using a text editor, or with tools such as sed. The
large number of Linux drivers, however, implies that
these approaches are time-consuming and unreliable,
leading to subtle errors when modifications are not
done consistently.

In this paper, we propose a transformation lan-
guage, SmPL, to specify collateral evolutions. Be-
cause Linux programmers are used to exchange, read,
and manipulate program modifications in terms of
patches, we build our language around the idea and
syntax of a patch, extending patches to semantic
patches.

1 Introduction

One major difficulty, and the source of highest cost, in
software development is to manage evolution. Soft-
ware evolves to add new features, to adapt to new
requirements, and to improve performance, safety, or
the software architecture. Nevertheless, while evolu-
tion can provide long-term benefits, it can also in-

*Appeared at the International ERCIM Workshop on Soft-
ware Evolution (2006)

Julia L. Lawall
DIKU,
University of Copenhagen
2100 Copenhagen @, Denmark
julia@diku.dk

Gilles Muller
Ecole des Mines de Nantes
INRIA, LINA
44307 Nantes cedex 3, France
Gilles.Muller@emn.fr

troduce short-term difficulties, when the evolution of
one component affects interfaces on which other com-
ponents rely.

In previous work [14], we have identified the phe-
nomenon of collateral evolution, in which an evolu-
tion that affects the interface of a generic library en-
tails modifications, i.e., collateral evolutions, in all
library clients. We have furthermore studied this
phenomenon in the context of Linux device drivers.
Collateral evolution is a significant problem in this
context because device drivers make up over half of
the Linux source code and are highly dependent on
the kernel and driver support libraries for functions
and data structures. From this study, we have iden-
tified a taxonomy of the relevant kinds of collateral
evolutions. These include changes in calls to library
functions to add or drop new arguments, changes in
callback functions defined by drivers to add or drop
required parameters, changes in data structures to
add or drop fields, and changes in function usage pro-
tocols.

Performing collateral evolutions requires identify-
ing the affected files and modifying all of the code
fragments in these files that somehow depend on the
changes in the interface. Standard techniques in-
clude manual search and replace in a text editor,
tools such as grep to find files with relevant prop-
erties, and tools such as sed, perl scripts, and emacs
macros to update relevant code fragments. None
of these approaches, however, provides any support
for taking into account the syntax and semantics of
C code. Errors result, such as deleting more lines
of code than intended or overlooking some relevant
code fragments. Furthermore, many collateral evo-
lutions involve control-flow properties, and thus re-
quire substantial programming-language expertise to
implement correctly.

In this paper, we propose a declarative transforma-
tion language, SmPL, to express precisely and con-
cisely collateral evolutions of Linux device drivers.
Linux programmers are used to exchanging, reading,
and manipulating patch files that provide a record
of previously performed changes. Thus, we base the
syntax of SmPL on the patch file notation. Unlike
traditional patches, which record changes at specific
sites in specific files, SmPL can describe generic trans-
formations that apply to multiple collateral evolution
sites. In particular, transformations are defined in
terms of control-flow graphs rather than abstract syn-
tax trees, and thus follow not the syntax of the C code
but its semantics. We thus refer to the transforma-
tion rules expressed using SmPL as semantic patches.

SmPL is a first step in a larger project to develop a
transformation tool, Coccinelle, providing automated
assistance for performing collateral evolutions. This
assistance will comprise the SmPL language for spec-
ifying collateral evolutions and a transformation en-
gine for applying them to device driver code. Our
goal is that the transformation process should be ro-
bust, and interactive when necessary, to remain able
to assist the driver maintainer in the face of unex-
pected variations in driver coding style.

The rest of this paper is organized as follows. Sec-
tion 2 describes a set of collateral evolutions that will
be used as our running example. Section 3 illustrates
how one of these collateral evolutions is expressed us-
ing the standard patch notation. Section 4 presents
SmPL in terms of this example. Finally, Sections 5
and 6 present related work and conclusions, respec-
tively.

2 Motivating Example

As a running example, we consider the collateral
evolutions that took place in SCSI drivers in Linux
2.5.71, in each driver’s “proc_info” function. Such a
function is exported by a SCSI driver to the SCSI
driver support library via the proc_info field of a
SHT (for SCSI Host Template) structure. Each func-
tion prints information about the status of the cor-
responding device in a format compatible with the
Linux procfs file system.

The collateral evolutions in the proc_info functions
were triggered by the decision that it is undesirable
for drivers to directly use the functions scsi_host_-
hn_get to obtain access to a representation of the
device and scsi_host_put to give up this access, be-
cause any incorrect use of these functions can break

the integrity of associated reference counts [9]. Start-
ing in Linux 2.5.71, these functions were no longer
exported by the SCSI driver support library. To
compensate for this evolution, the proc_info functions
were then passed a representation of the device as
an extra argument. An existing parameter that was
used as the argument of scsi host_hn_get was also
removed.

The collateral evolution in the case of the scsiglue
driver is illustrated in Figure 1. As shown in Fig-
ure la, in Linux 2.5.70 the function usb_storage -
proc_info declares a local variable hostptr (line 7),
representing the device, and contains code to ac-
cess (line 15), test (lines 16-18), and release (lines
23 and 33) the device value. All of this code is re-
moved in Linux 2.5.71 (Figure 1b).! Instead, the lo-
cal variable hostptr becomes a parameter of usb_-
storage_proc_info, with the same type. Addition-
ally, the hostno parameter of usb_storage proc_-—
info in Linux 2.5.70 is dropped in Linux 2.5.71. Ref-
erences to hostno are replaced by accesses to the
host_no field of the new hostptr parameter.

This example illustrates the combination of two of
the basic kinds of collateral evolutions identified in
our previous work [14]: (i) the introduction of a new
parameter and the corresponding elimination of com-
putation that this parameter makes redundant, and
(ii) the elimination of a parameter and the introduc-
tion of computations to reconstruct its value.

3 The Patch Approach

Traditionally, changes in the Linux operating system
are published using patch files [10]. A patch file is
created by manually performing the change in the
source code, and then running the diff tool on the
old and new versions, with special arguments so that
diff records not only the differences, but also some
position and context information. An entry in the
patch file consists of a header, indicating the name
of the old file preceded by --- and the name of the
new file preceded by +++. The header is followed by
a sequence of regions, each beginning with @@ ...
@@, which specifies the starting line numbers in the
old and new files. A region then contains a sequence
of lines of text, in which lines that are added are
indicated by + in the first column, lines that are re-
moved are indicated by - in the first column, and

1The conditional on lines 21-25 is removed as well in Linux
2.5.71, but that appears to be related to another evolution,
and thus we have left it in for the purposes of the example.

static int usb_storage_proc_info (
char *buffer, char **xstart, off_t offset,
int length, int hostno, int inout)

1

2

3

4

5 struct us_data *us;
6 char *pos = buffer;

7 struct Scsi_Host *hostptr;

8 unsigned long f;

10 /* if someone is sending us data, just throw it away */
11 if (inout)

12 return length;

14 /* find our data from the given hostno */
15 hostptr = scsi_host_hn_get(hostno);

16 if ('hostptr) {
17 return -ESRCH;
18}

19 us = (struct us_data*)hostptr—>hostdata[0];

21 /* if we couldn’t find it, we return an error */
22 if (lus) {

23 scsi_host_put (hostptr);
24 return -ESRCH;

25 }

26

27 /* print the controller name */

28 SPRINTF(" Host scsild: usb-storage\n", hostno);

29 /* print product, vendor, and serial number strings */
30 SPRINTF(" Vendor: %s\n", us->vendor);

32 /* release the reference count on this host */

33 scsi_host_put(hostptr);
34 ce

35 return length;

36 }

(a) Linux 2.5.70

1 static int usb_storage_proc_info (struct Scsi_Host *hostptr,
2 char *buffer, char **start, off_t offset,

3 int length, int inout)

4 {

5 struct us_data *us;

6 char *pos = buffer;

7

8 unsigned long f;

9

10 /* if someone is sending us data, just throw it away */
11 if (inout)
12 return length;

19 us = (struct us_data*)hostptr—>hostdata[0];

21 /* if we couldn’t find it, we return an error */
22 if (lus) {

24 return -ESRCH;
25 }

27 /* print the controller name */
28 SPRINTF(" Host scsi,d: usb-storage\n", hostptr->host_no);

29 /x print product, vendor, and serial number strings */
30 SPRINTF(" Vendor: %s\n", us->vendor);

35 return length;

(b) Linux 2.5.71

Figure 1: An example of collateral evolution, in drivers/usb/storage/scsiglue.c

lines that provide context information are indicated
by a space in the first column. To apply a patch
file, each mentioned file is visited, and the indicated
lines are added and removed. Normally, a patch file
is applied to a file that is identical to the one used
by the Linux developer to create it. It is possible to
instruct the patch tool to ignore the line numbers
or some of the lines of context, to be able to apply
the patch to a file that is similar but not identical to
the one intended. Nevertheless, because there is no
semantic analysis of either the meaning of the patch
or that of the affected source code, this approach is
error prone. Furthermore, in practice, patches are
quite brittle, and variations in the source code imply
that parts of the patch cannot be applied at all.

Figure 2 shows part of the patch file used to
update the function usb_storage_proc_info from
Linux 2.5.70 to Linux 2.5.71. While this patch may
apply to minor variations of the scsiglue.c file,
it cannot be applied to proc_info functions in other
SCSI drivers, because of the scsiglue-specific names
such as usb_storage_proc_info used in the modified

lines of code. This is unfortunate, because 19 SCSI
driver files in 4 different directories have to be up-
dated in the same way.

4 Expressing Collateral Evolu-
tions as a Semantic Patch

To express collateral evolutions, we propose the
SmPL language for specifying semantic patches. A
semantic patch is a specification that visually resem-
bles a patch file, but whose application is based on
the semantics of the code to be transformed, rather
than its syntax. To illustrate our approach, we now
present a semantic patch expressing the collateral
evolutions described in Section 2. We develop the
semantic patch incrementally, by showing successive
excerpts that each illustrate a feature of SmPL. In
contrast to a patch that applies to only one file, the
semantic patch can be applied to all of the files in the
Linux source tree, to selected files, or to an individual
file, even a file outside the Linux source tree.

--- a/drivers/usb/storage/scsiglue.c Sat Jun 14 12:18:55 2003
+++ b/drivers/usb/storage/scsiglue.c Sat Jun 14 12:18:55 2003
@@ -264,33 +300,21 @@
-static int usb_storage_proc_info (
+static int usb_storage_proc_info (struct Scsi_Host xhostptr,
char *buffer, char **start, off_t offset,
- int length, int hostno, int inout)
+ int length, int inout)
{
struct us_data *us;
char *pos = buffer;
- struct Scsi_Host *hostptr;
unsigned long f;

/* if someone is sending us data, just throw it away */
if (inout)
return length;

- /% find our data from the given hostno */
- hostptr = scsi_host_hn_get(hostno);
- if ('hostptr) {
- return -ESRCH;
-}
us = (struct us_data*)hostptr->hostdatal0];

/* if we couldn’t find it, we return an error */
if (tus) {
- scsi_host_put (hostptr) ;
return -ESRCH;
}

/* print the controller name */

- SPRINTF(" Host scsi’d: usb-storage\n", hostno);

+ SPRINTF(" Host scsi%d: usb-storage\n", hostptr->host_no);
/* print product, vendor, and serial number strings */
SPRINTF (" Vendor: %s\n", us->vendor);

@@ -318,9 +342,6 @@
*(pos++) = ’\n’;
- /% release the reference count on this host */

- scsi_host_put(hostptr);

/*

* Calculate start of next buffer, and return value.

Figure 2: Excerpt of the patch file from Linux 2.5.70
to Linux 2.5.71

4.1 Replacement

Our first excerpt changes the function signature:

proc_info_func (
+ struct Scsi_Host *hostptr,
char *buffer, char *xstart, off_t offset,
int length,
- int hostno,
int inout)

As in a standard patch, the lines beginning with +
and - are added and deleted, respectively. The re-
maining lines describe the modification context. This
excerpt is applied throughout a file, and transforms
every matching code fragment, regardless of spacing,
indentation or comments.

4.2 Metavariables, part 1

The previous rule assumes that the proc_info func-
tion has parameters buffer, start, etc. In practice,
however, the parameter names vary from one driver
to another. To make the rule insensitive to the choice
of names, we replace the explicit names by metavari-
ables. These are declared in a section delimited by
@@ that appears before each transformation, as illus-
trated below:?

@e
identifier buffer, start, offset, length, inout,
hostno;
fresh identifier hostptr;
e
proc_info_func (
+ struct Scsi_Host *hostptr,
char *buffer, char **start, off_t offset,
int length,
- int hostno,
int inout)

The metavariables buffer, start, offset,
length, inout, and hostno are used on lines an-
notated with - or space, and thus match terms in
the original source program. They are declared as
identifier, indicating that they match any identi-
fier. The metavariable hostptr represents a param-
eter that is newly added to the function signature.
We thus declare it as a fresh identifier, indicat-
ing that some identifier should be chosen that does
not conflict with the other identifiers in the program.

A semantic patch may contain multiple regions,
each declaring some metavariables and specifying a
transformation rule. Once declared, a metavariable
obtains its value from matching the transformation
rule against the source code. It then keeps its value
until it is redeclared.

4.3 Metavariables, part 2

As illustrated in Figure 1, the name of the function
to transform is generally not proc_info_func, but is
something specific to each driver. Rather than rely
on properties of the name chosen, we identify the
function in terms of its relation with the SCSI inter-
face. Specifically, the function to modify is one that
is stored in the proc_info field of a SHT structure.
The following excerpt, placed before the excerpt of
Section 4.2, expresses this constraint:

2@A@ is used in patch files to indicate the starting line num-
ber of the transformed code.

[¢l¢]
struct SHT sht;
local function proc_info_func;
[¢¢]
sht.proc_info = proc_info_func;

The declaration struct SHT sht; indicates that
the metavariable sht represents an expression of type
struct SHT. This type specification avoids ambiguity
when multiple structure types have fields of the same
name. If there is more than one assignment of the
proc_info field, the metavariable proc_info_func is
bound to the set of all possible right-hand sides. Sub-
sequent transformations that use this metavariable
are instantiated for all elements of this set.

4.4 Sequences, part 1

The next step is to remove the sequence of statements
that declare the hostptr local variable and access,
test, and release its value. Because these statements
can be separated by arbitrary code, as illustrated in
Figure la (lines 7, 15-18, 23, and 33), we use the
operator ..., as follows:

Q@
identifier buffer, start, offset, length, inout,
hostptr, hostno;

(¢}
proc_info_func (
+ struct Scsi_Host *hostptr,
char *buffer, char **xstart, off_t offset,
int length,

- int hostno,
int inout) {

- struct Scsi_Host *hostptr;

- hostptr = scsi_host_hn_get (hostno);

- if (lhostptr) { ... }
- scsi_host_put(hostptr);

}

If we compare this rule to Figure la, we see that
the declaration, access, and test each appear exactly
once in the source program, as in the rule, but that
scsi_host_put is called twice, once in line 23 in han-
dling an error, and once in line 33 near the end of the
function. To address this issue, SmPL is control-flow
oriented, rather than abstract-syntax tree-oriented.
Thus, when a transformation includes ..., it is ap-
plied to every control flow path between the terms
matching the endpoints, which here are the begin-
ning and end of the function definition. For instance,

in Figure la, after the assignment of the variable us,
there are two control flow paths, one that is an error
path (lines 23-24), and another that continues until
the final return (lines 27-35). A call to scsi_host_-
put is removed from each of them. Thus, a single -
line may in practice erase multiple lines of code, one
per control flow path.

Recall that in Section 4.2, we created a fresh iden-
tifier as the new parameter hostptr. In fact, when
the collateral evolutions were performed by hand,
the parameter was always given the name of the
deleted Scsi_Host-typed local variable. Now that we
have expanded the semantic patch extract to contain
both the parameter and the local variable declara-
tion, we can express this naming strategy by using
the same metavariable, declared as an identifier,
in both cases. This repetition implies that both oc-
currences refer to the same term, thus transmitting
the name of the old local variable to the new parame-
ter. Metavariables are thus similar to logic variables,
in that every occurrence of a metavariable within a
rule refers to the same set of terms. Unlike the logic
variables of Prolog, however, metavariables are al-
ways bound to ground terms.

This part of the collateral evolution introduced
some bugs in the Linux 2.5.71 version. For example,
in two files the hostno parameter was not dropped,
resulting in a function that expected too many argu-
ments. The problem was fixed in Linux 2.6.0, which
was released 6 months later.

4.5 Sequences, part 2

Finally, we consider the treatment of references to the
deleted hostno parameter. In each case, the reference
should be replaced by hostptr->host_no. Here we
are not interested in enforcing any particular number
of occurrences of hostno along any given control-flow
path, so we use the operator <... ...>that applies
the transformation everywhere within the matched
region:

(¢[¢]
Qe
proc_info_func(...) {
<...
hostno
+ hostptr->host_no
D>

}

Note that ... can be used to represent any kind of
sequence. Here, in the first line, it is used to represent
a sequence of parameters.

4.6 Isomorphisms

We have already mentioned that a semantic patch
is insensitive to spacing, indentation and comments.
Moreover, by defining sequences in terms of control-
flow paths, we abstract away from the very different
forms of sequencing that exist in C code. These fea-
tures help make a semantic patch generic, allowing
the patch developer to write only a few scenarios,
while the transformation tool handles other scenarios
that are semantically equivalent.

In fact, these features are a part of a larger set
of semantic equivalences that we refer to as isomor-
phisms. Other isomorphisms that are relevant to this
example include typedef aliasing (e.g., struct SHT is
commonly referred to as SCSI_Host_Template), the
various ways of referencing a structure field (e.g.,
exp->field and *exp. field), and the various ways of
testing for a null pointer (e.g., 'hostno and hostno
== NULL). We have identified many more useful iso-
morphisms, and continue to discover new ones.

4.7 All together now

Figure 3 presents the complete semantic patch that
implements the collateral evolutions described in Sec-
tion 2. This version is augmented as compared to the
previous extracts in that the error checking code if
('hostptr) { } and the call to scsi_host_put
are annotated with 7, indicating that matching these
patterns is optional (although removing them if they
are matched is obligatory).

4.8 Assessment

A semantic patch describes the evolution primarily
in terms of ordinary C code. Among the 62 semantic
patches we have written, we have often found it pos-
sible to construct a semantic patch by copying and
modifying existing driver code. The close relation-
ship to actual driver code should furthermore make
it easy for a driver maintainer who wants to apply
a semantic patch to understand its intent and the
relationship between the various transformed terms.

The “proc_info” semantic patch applies to 19 files
in 4 different directories of the Linux source tree. In
the standard patch notation, the specification of the
required changes amounts to 614 lines of code for
the files in the Linux source tree, resulting in on av-
erage 32.3 lines per file. The semantic patch is 33
lines of code and applies to all relevant files including
those not in the Linux source tree. Because semantic

Q@
struct SHT sht;
local function proc_info_func;
@Q
sht.proc_info = proc_info_func;

e
identifier buffer, start, offset, length, inout,
hostptr, hostno;

Q@
proc_info_func (

+ struct Scsi_Host *hostptr,
char *buffer, char *xstart, off_t offset,
int length,

- int hostno,
int inout) {

- struct Scsi_Host *hostptr;

- hostptr = scsi_host_hn_get (hostno);

?- if (thostptr) { ... }

?- scsi_host_put(hostptr);

@@
@@
proc_info_func(...) {

<...
hostno

+ hostptr->host_no

o>
¥

Figure 3: A complete Semantic Patch

patches are intended to implement collateral evolu-
tions, which are determined by interface changes, and
because interface elements are typically used only ac-
cording to very restricted protocols, we expect that
most semantic patches will exhibit a similar degree of
reusability.

5 Related work

Influences. The design of SmPL was influenced by a
number of sources. Foremost among these is our tar-
get domain, the world of Linux device drivers. Linux
programmers use patches extensively, have designed
various tools around them [11], and use its syntax
informally in e-mail to describe software evolutions.
This has encouraged us to consider the patch syntax
as a valid alternative to classical rewriting systems.
Other influences include the Structured Search and
Replace (SSR) facility of the IDEA development envi-
ronment from JetBrains [12], which allows specifying
patterns using metavariables and provides some iso-

morphisms, and the work of De Volder on JQuery [2],
which uses Prolog logic variables in a system for
browsing source code. Finally, we were inspired to
base the semantics of SmPL on control-flow graphs
rather than abstract syntax trees by the work of
Lacey and de Moor on formally specifying compiler
optimizations. [7]

Other work. Refactoring is a generic program trans-
formation that reorganizes the structure of a pro-
gram without changing its semantics [5]. Some of
the collateral evolutions in Linux drivers can be seen
as refactorings. Refactorings, however, apply to the
whole program, requiring accesses to all usage sites
of affected definitions. In the case of Linux, however,
the entire code base is not available, as many drivers
are developed outside the Linux source tree. There
is currently no way of expressing or generating the
effect of a refactoring on such external code. Other
collateral evolutions are very specific to an OS API,
and thus cannot be described as part of a generic
refactoring [8]. In practice, refactorings are used via
a development environment such as Eclipse that only
provides a fixed set of transformations. JunGL is a
scripting language that allows programmers to imple-
ment new refactorings [17]. This language should be
able to express collateral evolutions. Nevertheless,
a JunGL transformation rule does not make visu-
ally apparent the relationship between transformed
source terms, which we have found makes the pro-
vided examples difficult to read. Furthermore, the
language is in the spirit of ML, which is not part of
the standard toolbox of Linux developers.

A number of program transformation frameworks
have recently been proposed, targeting industrial-
strength languages such as C and Java. CIL [13]
and XTC [6] are essentially parsers that provide some
support for implementing abstract syntax tree traver-
sals. No program transformation abstractions, such
as pattern matching using logic variables, are cur-
rently provided. CIL also manages the C source code
in terms of a simpler intermediate representation.
Rewrite rules must be expressed in terms of this rep-
resentation rather than in terms of the code found
in a relevant driver. Stratego is a domain-specific
language for writing program transformations [18].
Convenient pattern-matching and rule management
strategies are built in, implying that the programmer
can specify what transformations should occur with-
out cluttering the code with the implementation of
transformation mechanisms. Nevertheless, only a few
program analyses are provided. Any other analyses

that are required, such as control-flow analysis, have
to be implemented in the Stratego language. In our
experience, this leads to rules that are very complex
for expressing even simple collateral evolutions.

Coady et al. have used Aspect-Oriented Program-
ming (AOP) to extend OS code with new features
[1, 4]. Nevertheless, AOP is targeted towards modu-
larizing concerns rather than integrating them into a
monolithic source code. In the case of collateral evo-
lutions, our observations suggest that Linux develop-
ers favor approaches that update the source code, re-
sulting in uniformity among driver implementations.
For example, on occasion, wrapper functions have
been introduced to allow code respecting both old
and new versions of an interface to coexist, but these
wrapper functions have typically been removed after
a few versions, when a concerted effort has been made
to update the code to respect the new version of the
interface.

The Linux community has recently begin using var-
ious tools to better analyze C code. Sparse [15] is a
library that, like a compiler front end, provides con-
venient access to the abstract syntax tree and typing
information of a C program. This library has been
used to implement some static analyses targeting bug
detection, building on annotations added to variable
declarations, in the spirit of the familiar static and
const. Smatch [16] is a similar project and enables a
programmer to write Perl scripts to analyze C code.
Both projects were inspired by the work of Engler et
al. [3] on automated bug finding in operating systems
code. These examples show that the Linux commu-
nity is open to the use of automated tools to improve
code quality, particularly when these tools build on
the traditional areas of expertise of Linux developers.

6 Conclusion

In this paper, we have proposed a declarative lan-
guage, SmPL, for expressing the transformations re-
quired in performing collateral evolutions in Linux
device drivers. This language is based on the patch
syntax familiar to Linux developers, but enables
transformations to be expressed in a more general
form. The use of isomorphisms in particular al-
lows a concise representation of a transformation
that can nevertheless accommodate multiple pro-
gramming styles. SmPL furthermore addresses all
of the elements of the taxonomy of the kinds of col-
lateral evolutions in Linux device drivers identified in
our previous work.

We are currently completing a formal specification
of the semantics of SmPL, and are exploring avenues
for an efficient implementation. In the longer term,
we plan to use SmPL to specify the complete set of
collateral evolutions required to update drivers from
one version of Linux to a subsequent one.

Acknowledgments

This work has been supported in part by the Agence
Nationale de la Recherche (France) and the Dan-
ish Research Council for Technology and Production
Sciences. Further information about the Coccinelle
project can be found at the URL:
http://www.emn.fr/x-info/coccinelle/

References

[1] Y. Coady and G. Kiczales. Back to the future:
a retroactive study of aspect evolution in oper-
ating system code. In Proceedings of the 2nd In-
ternational Conference on Aspect-Oriented Soft-
ware Development, AOSD 2003, pages 50-59,
Boston, Massachusetts, Mar. 2003.

[2] K. De Volder. JQuery: A generic code browser
with a declarative configuration language. In
Practical Aspects of Declarative Languages, Sth
International Symposium, PADL 2006, pages
88-102, Charleston, SC, Jan. 2006.

[3] D. R. Engler, B. Chelf, A. Chou, and S. Hallem.
Checking system rules using system-specific,
programmer-written compiler extensions. In
Proceedings of the Fourth USENIX Symposium
on Operating Systems Design and Implementa-
tion (OSDI), pages 1-16, San Diego, CA, Oct.
2000.

[4] M. Fiuczynski, R. Grimm, Y. Coady, and
D. Walker. Patch (1) considered harmful. In
10th Workshop on Hot Topics in Operating Sys-
tems (HotOS X), Santa Fe, NM, June 2005.

[5] M. Fowler. Refactoring: Improving the Design
of Existing Code. Addison Wesley, 1999.

[6] R. Grimm. XTC: Making C safely extensible.
In Workshop on Domain-Specific Languages for
Numerical Optimization, Argonne National Lab-
oratory, Aug. 2004.

[7] D. Lacey and O. de Moor. Imperative program
transformation by rewriting. In R. Wilhelm, ed-
itor, Compiler Construction, 10th International
Conference, CC 2001, number 2027 in Lecture
Notes in Computer Science, pages 52—-68, Gen-
ova, Italy, Apr. 2001.

[8] J. L. Lawall, G. Muller, and R. Urunuela. Taran-
tula: Killing driver bugs before they hatch. In
The 4th AOSD Workshop on Aspects, Compo-
nents, and Patterns for Infrastructure Software
(ACP4IS), pages 13-18, Chicago, IL, Mar. 2005.

[9) LWN. ChangelLog for Linux 2.5.71,
http://lwn.net/Articles/36311/.

2003.

[10] D. MacKenzie, P. Eggert, and R. Stallman.
Comparing and Merging Files With Gnu Diff
and Patch. Network Theory Ltd, Jan. 2003.
Unified Format section,

http://www.gnu.org/software/diffutils/manual /

html_node/Unified-Format.html.

A. Morton. Patch-scripts, Oct. 2002.
http://www.zip.com.au/~akpm/linux/patches/.

M. Mossienko. Structural search and replace:
What, why, and how-to. OnBoard Magazine,
2004. http://www.onboard.jetbrains.com/isl/
articles/04/10/ssr/.

[13] G. C. Necula, S. McPeak, S. P. Rahul, and
W. Weimer. CIL: Intermediate language and
tools for analysis and transformation of C pro-
grams. In Compiler Construction, 11th Inter-
national Conference, CC 2002, number 2304 in
Lecture Notes in Computer Science, pages 213—

228, Grenoble, France, Apr. 2002.

[14] Y. Padioleau, J. L. Lawall, and G. Muller. Un-

derstanding collateral evolution in Linux device
drivers. In The first ACM SIGOPS EuroSys con-
ference (EuroSys 2006), Leuven, Belgium, Apr.
2006. To appear.

[15] D. Searls. Sparse, Linus & the Lunatics, Nov.
2004.

http://www.linuxjournal.com/article/7272.

The Kernel Janitors. Smatch, the source
matcher, June 2002.

http://smatch.sourceforge.net.

M. Verbaere, R. Ettinger, and O. de Moor.
JunGL: a scripting language for refactoring. In

International Conference on Software Engineer-
ing (ICSE), Shanghai, China, May 2006.

E. Visser. Program transformation with Strat-
ego/XT: Rules, strategies, tools, and systems
in StrategoXT-0.9. In C. Lengauer et al., edi-
tors, Domain-Specific Program Generation, vol-
ume 3016 of Lecture Notes in Computer Science.
Spinger-Verlag, 2004.

