JMake: Dependable Compilation for Kernel Janitors

Julia Lawall, Gilles Muller
Inria/LIP6-Whisper

June 28, 2017

Software grows over time

Python v0.9.8: Wine v0.0.2:
61K LOC 2K LOC
1993 1993

Linux v1.0:
122K LOC
1994

2

Software grows over time

Python v2.7: Wine v1.0:
850K LOC 1.5M LOC
2010 2008

Linux v3.0:
10M LOC
2011

k]

Software grows over time

Python v3.6.1: Wine v2.11:
982K LOC 2.8M LOC
2017 2017

Linux v4.11:
15M LOC
2017

4

Software grows over time

Python v3.6.1: Wine v2.11:
982K LOC 2.8M LOC
2017 2017

Linux v4.11:
15M LOC
2017

Need to support different configurations

CONFIG_ARM CONFIG_.PM_SLEEP

CONFIG_MIPS_GIC

6

Need for support from different kinds of developers

Maintainers Contributors

Janitors

Need for support from different kinds of developers

Maintainers Contributors

Q

Janitor definition

A SoftwareJanitor is a GruntProgrammer who comes in to clean up the other
developers’ messes or do otherwise necessary yet unglamorous tasks.

http://wiki.c2.com/?SoftwareJanitor

Janitor definition

A SoftwareJanitor is a GruntProgrammer who comes in to clean up the other
developers’ messes or do otherwise necessary yet unglamorous tasks.

http://wiki.c2.com/?SoftwareJanitor

e Janitors know coding style conventions and API changes.
e Janitors may not know individual subsystems deeply.

e Testing often limited to successful compilation.

10

Silent compiler failure scenario

e Janitor modifies some code.
e Compilation succeeds.

e But errors may remain, if the configuration chosen does not subject the changed
lines to compilation.

This work

Goal: Improve the reliability of the work of janitors.

This work

Goal: Improve the reliability of the work of janitors.

Our approach: JMake

e Automate the choice of architecture and configuration

e Automate the detection of lines subjected to the compiler

This work

Goal: Improve the reliability of the work of janitors.

Our approach: JMake

e Automate the choice of architecture and configuration

e Automate the detection of lines subjected to the compiler

Want to provide immediate feedback, via a tool that janitors can run themselves.

Example (commit 538ea4a)

diff --git a/kernel/memremap.c b/kernel/memremap.c
--- a/kernel/memremap.c

+++ b/kernel/memremap.c

@@ -114,7 +114,8 @@

{
void **xptr, *addr;
ptr = devres_alloc(devm_memremap_release, sizeof (xptr), GFP_KERNEL);
+ ptr = devres_alloc_node(devm_memremap,release, sizeof(*ptr), GFP_KERNEL ,
+ dev_to_node (dev));

if (!ptr)
return ERR_PTR (-ENOMEM);

@e -165,8 +166,8 @@

if (is_ram == REGION_INTERSECTS)
return __va(res->start);
- page_map = devres_alloc(devm_memremap_pages_release,
- sizeof (*page_map), GFP_KERNEL);
+ page_map = devres_alloc_node(devm_memremap_pages_release,
+ sizeof (xpage_map), GFP_KERNEL, dev_to_node(dev));

if (!page_map)
return ERR_PTR (-ENOMEM);

Example (commit 538ea4a)

diff --git a/kernel/memremap.c b/kernel/memremap.c
--- a/kernel/memremap.c

+++ b/kernel/memremap.c

@@ -114,7 +114,8 @@

{

0@ -165,

void **xptr, *addr;

ptr = devres_alloc(devm_memremap_release, sizeof (*ptr), GFP_KERNEL);
ptr = devres_alloc_node(devm_memremap_release, sizeof (¥ptr), GFP_KERNEL,
dev_to_node (dev));
if (!ptr)
return ERR_PTR (-ENOMEM);

8 +166,8 @@
if (is_ram == REGION_INTERSECTS)
return __va(res->start);

page_map = devres_alloc(devm_memremap_pages_release,
sizeof (*page_map), GFP_KERNEL);
page_map = devres_alloc_node(devm_memremap_pages_release,
sizeof (xpage_map), GFP_KERNEL, dev_to_node(dev));
if (!page_map)
return ERR_PTR(-ENOMEM);

e First change compiled for x86/allyesconfig.
e Second under #ifdef CONFIG_ZONE_DEVICE (29 lines up)

diff

Example (commit 538ea4a)

--git a/kernel/memremap.c b/kernel/memremap.c

--- a/kernel/memremap.c
+++ b/kernel/memremap.c

ee
{

+

ee

-114,7 +114,8 @

void **xptr, *addr;

ptr = devres_alloc(devm_memremap_release, sizeof (*ptr), GFP_KERNEL);
ptr = devres_alloc_node(devm_memremap_release, sizeof (¥ptr), GFP_KERNEL,
dev_to_node (dev));
if (!ptr)
return ERR_PTR(-ENOMEM);

-165,8 +166,8 @@

if (is_ram == REGION_INTERSECTS)
return __va(res->start);

page_map = devres_alloc(devm_memremap_pages_release,
sizeof (xpage_map), GFP_KERNEL);
page_map = devres_alloc_node(devm_memremap_pages_release,
sizeof (xpage_map), GFP_KERNEL, dev_to_node(dev));
if (!page_map)
return ERR_PTR(-ENOMEM);

e First change compiled for x86/allyesconfig.
e Second under #ifdef CONFIG_ZONE_DEVICE (29 lines up)

— JMake reports that the second is not compiled.

17

Example (commit 7d32cde)

diff --git a/drivers/usb/musb/musb_core.c b/drivers/usb/musb/musb_core.c
--- a/drivers/usb/musb/musb_core.c

+++ b/drivers/usb/musb/musb_core.c

@@ -2094,6 +2094,7 Q@

#ifndef CONFIG_MUSB_PIO_ONLY

if (!musb->ops->dma_init || !musb->ops->dma_exit) {
dev_err (dev, "DMA controller not set\n");
+ status = -ENODEV;
goto fail2;
}
musb_dma_controller_create = musb->ops->dma_init;

Example (commit 7d32cde)

diff --git a/drivers/usb/musb/musb_core.c b/drivers/usb/musb/musb_core.c
--- a/drivers/usb/musb/musb_core.c

+++ b/drivers/usb/musb/musb_core.c

@@ -2094,6 +2094,7 Q@

#ifndef CONFIG_MUSB_PIO_ONLY

if (!musb->ops->dma_init || !musb->ops->dma_exit) {
dev_err (dev, "DMA controller not set\n");
+ status = -ENODEV;
goto fail2;
}
musb_dma_controller_create = musb->ops->dma_init;

e Compilation succeeds for x86/allyesconfig, but JMake reports that the changed
line is overlooked.

Example (commit 7d32cde)

diff --git a/drivers/usb/musb/musb_core.c b/drivers/usb/musb/musb_core.c
--- a/drivers/usb/musb/musb_core.c

+++ b/drivers/usb/musb/musb_core.c

@@ -2094,6 +2094,7 Q@

#ifndef CONFIG_MUSB_PIO_ONLY

if (!musb->ops->dma_init || !musb->ops->dma_exit) {
dev_err (dev, "DMA controller not set\n");
+ status = -ENODEV;
goto fail2;
}
musb_dma_controller_create = musb->ops->dma_init;

e Compilation succeeds for x86/allyesconfig, but JMake reports that the changed
line is overlooked.

e JMake finds that the changed line is compiled for ARM.

Step 1: Choice of architecture and configuration

Key observation: Compilation is architecture (arch) specific.

Available resources:

e Linux kernel cross-compilation infrastructure

e Provided sample configurations

21

Step 1: Choice of architecture and configuration

Key observation: Compilation is architecture (arch) specific.

Available resources:

e Linux kernel cross-compilation infrastructure

e Provided sample configurations

Issue: Compilation is expensive

e 24 architectures supported.
e ~500 sample configurations provided.

e [nfeasible to consider them all.

Choice of architecture and configuration for . c files

Search heuristics:

1. Architecture-specific allyesconfig for arch files,
Default x86/allyesconfig for others.

2. CONFIG variable from Makefile line for the .c file

— allyesconfig for each arch that references CONFIG
— one specific config file, if any in that arch, that references CONFIG

3. All CONFIG variables in the Makefile referencing the .c file

— Same as in the previous case.

Choice of architecture and configuration for .h files

Extra challenges:

.h files cannot be compiled directly.

Need to find a .c file that is affected by the changes in the .h file.

Multiple header files may have the same name - inclusion is configuration
dependent.

— Select all .c files including files with the header name.

Header files often define macros, which are only subject to compilation if used.
— Prioritize . c files that refer to changed macros.

Step 2: Detecting which lines are subjected to the compiler

Issue: Due to config options, compilation of a changed file can succeed without
checking the changes.

25

Step 2: Detecting which lines are subjected to the compiler

Issue: Due to config options, compilation of a changed file can succeed without
checking the changes.

Options:

e Check line numbers in compiled code (e.g., .1st file).

Step 2: Detecting which lines are subjected to the compiler

Issue: Due to config options, compilation of a changed file can succeed without
checking the changes.
Options:

e Check line numbers in compiled code (e.g., .1st file).
— Macro bodies move to usage points, lose line numbers.

Step 2: Detecting which lines are subjected to the compiler

Issue: Due to config options, compilation of a changed file can succeed without
checking the changes.
Options:

e Check line numbers in compiled code (e.g., .1st file).
— Macro bodies move to usage points, lose line numbers.

e Mutate changed source code, look for line numbers in error messages.

Step 2: Detecting which lines are subjected to the compiler

Issue: Due to config options, compilation of a changed file can succeed without
checking the changes.
Options:

e Check line numbers in compiled code (e.g., .1st file).
— Macro bodies move to usage points, lose line numbers.

e Mutate changed source code, look for line numbers in error messages.
— No control of the compiler’s error reporting strategy.

Step 2: Detecting which lines are subjected to the compiler

Issue: Due to config options, compilation of a changed file can succeed without
checking the changes.

Options:

e Check line numbers in compiled code (e.g., .1st file).
— Macro bodies move to usage points, lose line numbers.

e Mutate changed source code, look for line numbers in error messages.
— No control of the compiler’s error reporting strategy.

Our solution:

e Mutate changed source code, look for mutations in preprocessed code (.1 files).

Step 2: Detecting which lines are subjected to the compiler

Issue: Due to config options, compilation of a changed file can succeed without
checking the changes.

Options:
e Check line numbers in compiled code (e.g., .1st file).

— Macro bodies move to usage points, lose line numbers.

e Mutate changed source code, look for line numbers in error messages.
— No control of the compiler’s error reporting strategy.

Our solution:

e Mutate changed source code, look for mutations in preprocessed code (.1 files).
— Final validation: produce unmutated .o file.

Example

Linux kernel commit 95ea3e760ef8:

@@ -48,0 +49,4 @@

+#define DAS16CS_AI_MUX_HI_CHAN (x) (((x) & 0xf) << 4)
+#define DAS16CS_AI_MUX_LO_CHAN (x) (((x) & 0xf) << 0)
+#define DAS16CS_AI_MUX_SINGLE_CHAN (x)(DAS16CS_AI_MUX_HI_CHAN (x) |\
+ DAS16CS_AI_MUX_LO_CHAN(x))

@@ -114 +118,2 @@

- outw(chan, dev->iobase + DAS16CS_AI_MUX_REG);
+ outw (DAS16CS_AI_MUX_SINGLE_CHAN (chan),

+ dev->iobase + DAS16CS_AI_MUX_REG);

292

Example
Mutated code:

#define DAS16CS_AI_MUX_HI_CHAN(x) (((x) & 0xf) << 4)0"define:xcb_dasl16_cs.c:49"Q

#define DAS16CS_AI_MUX_LO_CHAN(x) (((x) & 0xf) << 0)"define:cb_das16_cs.c:50"Q

#define DAS16CS_AI_MUX_SINGLE_CHAN(x) (DAS16CS_AI_MUX_HI_CHAN(x) | OU"define:cb_dasl6_cs.c:51"Qg \
DAS16CS_AI_MUX_LO_CHAN(x))

Xd"noncomment:cb_dasl6_cs.c:118"Q
outw(DAS16CS_AI_MUX_SINGLE_CHAN(chan),
dev->iobase + DAS16CS_AI_MUX_REG);

Example
Mutated code:

#define DAS16CS_AI_MUX_HI_CHAN(x) (((x) & Oxf) << 4)g"define:xcb_dasl6_cs.c:49"Q

#define DAS16CS_AI_MUX_LO_CHAN(x) (((x) & 0xf) << 0)"define:cb_das16_cs.c:50"Q

#define DAS16CS_AI_MUX_SINGLE_CHAN(x) (DAS16CS_AI_MUX_HI_CHAN(x) | OU"define:cb_dasl6_cs.c:51"Qg \
DAS16CS_AI_MUX_LO_CHAN(x))

Xd"noncomment:cb_dasl6_cs.c:118"Q
outw(DAS16CS_AI_MUX_SINGLE_CHAN(chan),
dev->iobase + DAS16CS_AI_MUX_REG);

Generated .i code:

O"noncomment:cb_dasl16_cs.c:118"Q
outw(((((chan) & 0xf) << 4)"define:xcb_dasl16_cs.c:49"Q | O"define:cb_das16_cs.c:51"Q
(((chan) & O0xf) << 0)d"define:cb_dasl16_cs.c:50"Q),
dev->iobase + DAS16CS_AI_MUX_REG);

24

Example
Mutated code:

#define DAS16CS_AI_MUX_HI_CHAN(x) (((x) & Oxf) << 4)g"define:xcb_dasl6_cs.c:49"Q

#define DAS16CS_AI_MUX_LO_CHAN(x) (((x) & 0xf) << 0)"define:cb_das16_cs.c:50"Q

#define DAS16CS_AI_MUX_SINGLE_CHAN(x) (DAS16CS_AI_MUX_HI_CHAN(x) | O¥"define:cb_dasl6_cs.c:51"g \
DAS16CS_AI_MUX_LO_CHAN(x))

Xd"noncomment:cb_dasl6_cs.c:118"Q

outw(DAS16CS_AI_MUX_SINGLE_CHAN(chan),
dev->iobase + DAS16CS_AI_MUX_REG);

Generated .i code:
O"noncomment:cb_dasl16_cs.c:118"Q
outw(((((chan) & 0xf) << 4)"define:xcb_dasl16_cs.c:49"Q | O"define:cb_das16_cs.c:51"Q

(((chan) & O0xf) << 0)d"define:cb_dasl16_cs.c:50"Q),
dev->iobase + DAS16CS_AI_MUX_REG);

All changes compiled in this case.

25

Evaluation

Data: All commits in Linux kernel v4.3..v4.4 (2.5 months, Nov 2015 - Jan 2016)

e 11K commits considered

Test machine: 48-core AMD Opteron 6172, 2.1 GHz CPUs, 12 512KB L2 caches, and
251G RAM.

e Each commit processed on a single core.

Benefits of alternate compilations

e Most files are affected by changes that benefit from compilation for x86_64:
17091 (96%)

e 365 non-arch .c files do not benefit from compilation for x86_64,
but do benefit from compilation for some other architecture.

— Typically ARM.

e 75 non-arch .h files do not benefit from compilation for x86_64,
but do benefit from compilation for some other architecture.

Silent compiler failures

415 (3%) of .c file instances compile successfully with make allyesconfig, but not
all modified lines are subjected to the compiler.

e For 54 of these file instances, JMake ultimately succeeds, by considering other
architectures.

e For 361 file instances, JMake reports failure.

e JMake is beneficial in both cases.

Silent compiler failures

415 (3%) of .c file instances compile successfully with make allyesconfig, but not
all modified lines are subjected to the compiler.

e For 54 of these file instances, JMake ultimately succeeds, by considering other
architectures.

e For 361 file instances, JMake reports failure.

e JMake is beneficial in both cases.

Some issues:
e Never set configuration variable.
e Changes in both #ifdef and #else.
e Changes under #ifdef MODULE

e Changes in unused macros.

Y0

Y0

Execution time

100 100
80 80
60 . 60
40 S 40
20 20

0 0
0o 1 2 3 4 5 0

sec

a) make allyesconfig

100 100
80 80
60 . 60
40 < 40
20 20

0 0
1 10 100 1000 1
sec (log)

c) make .o
a0

10 100 1000
sec (log scale)

d) overall

11K commits
2.1 GHz CPU

What about janitors?

A SoftwareJanitor is a GruntProgrammer who comes in to clean up the other
developers’ messes or do otherwise necessary yet unglamorous tasks.

a1

What about janitors?

A SoftwareJanitor is a GruntProgrammer who comes in to clean up the other
developers’ messes or do otherwise necessary yet unglamorous tasks.

Need a more quantitative definition...

Proposed janitor characterization

Some thresholds (v3.0..v4.4):

patches > 10
subsystems > 20
lists >

maintainer patches | < 5%

File coefficient of variation (cv):

Standard deviation in commits per modified file
Mean commits per modified file.

43

|dentified janitors (top 10 by lowest cv)

patches subsystems lists maintainer file cv
Javier Martinez Canillas| 118 61 30 0% 0.25
Luis de Bethencourt 104 56 31 0% 0.41
Dan Carpenter (T) 1554 400 146 0% 0.43
Julia Lawall (T) 653 255 93 0% 0.67
Shraddha Barke (I) 160 21 14 0% 0.72
Joe Perches (T) 1078 530 158 2% 0.81
Axel Lin 1044 142 49 0% 0.92
Daniel Borkmann 121 25 15 0% 1.29
Fabio Estevam 790 95 42 0% 1.29
Jarkko Nikula 173 30 14 0% 1.35

~600 commits in v4.3..v4.4

a4

Results on janitor patches

21 silent compilation failures on .c files, 3 on .h files

45

Results on janitor patches

21 silent compilation failures on .c files, 3 on .h files

Running time on janitor commits (CDF):

100
80
60
40
20

0

Y0

T R
1 10 100 1000

sec (log scale)

46

Conclusion

JMake addresses the problem of reliably compile checking Linux kernel code
changes.

— Automatic choice of architecture/configuration.
— Feedback on the compilation of changed lines, in the presence of conditional
compilation.

Forces compilation of all changed lines on 85% of all commits and 88% of janitor
commits.

— Over 80% of commits treated in 30 seconds or less.
Potentially applicable to other software for which configurations are available.

Currently being used in our kernel constification project (ClI).

A7

Conclusion

JMake addresses the problem of reliably compile checking Linux kernel code
changes.

— Automatic choice of architecture/configuration (Linux specific heuristics).
— Feedback on the compilation of changed lines, in the presence of conditional
compilation.

Forces compilation of all changed lines on 85% of all commits and 88% of janitor
commits.

— Over 80% of commits treated in 30 seconds or less.
Potentially applicable to other software for which configurations are available.

Currently being used in our kernel constification project (ClI).

A8

Conclusion

JMake addresses the problem of reliably compile checking Linux kernel code
changes.

— Automatic choice of architecture/configuration (Linux specific heuristics).
— Feedback on the compilation of changed lines, in the presence of conditional
compilation (Linux independent methodology).

Forces compilation of all changed lines on 85% of all commits and 88% of janitor
commits.

— Over 80% of commits treated in 30 seconds or less.
Potentially applicable to other software for which configurations are available.

Currently being used in our kernel constification project (ClI).

40

Conclusion

JMake addresses the problem of reliably compile checking Linux kernel code
changes.

— Automatic choice of architecture/configuration (Linux specific heuristics).
— Feedback on the compilation of changed lines, in the presence of conditional
compilation (Linux independent methodology).

Forces compilation of all changed lines on 85% of all commits and 88% of janitor
commits.

— Over 80% of commits treated in 30 seconds or less.
Potentially applicable to other software for which configurations are available.

Currently being used in our kernel constification project (ClI).

http://jmake-release.gforge.inria.fr

50

