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Software grows over time

Python v0.9.8: Wine v0.0.2:
61K LOC 2K LOC
1993 1993

Linux v1.0:
122K LOC
1994
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Software grows over time

Python v2.7: Wine v1.0:
850K LOC 1.5M LOC
2010 2008

Linux v3.0:
10M LOC
2011
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Software grows over time

Python v3.6.1: Wine v2.11:
982K LOC 2.8M LOC
2017 2017

Linux v4.11:
15M LOC
2017
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Need to support different configurations

CONFIG_ARM CONFIG_.PM_SLEEP

CONFIG_MIPS_GIC
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Need for support from different kinds of developers

Maintainers Contributors

Janitors
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Janitor definition

A SoftwareJanitor is a GruntProgrammer who comes in to clean up the other
developers’ messes or do otherwise necessary yet unglamorous tasks.

http://wiki.c2.com/?SoftwareJanitor



Janitor definition

A SoftwareJanitor is a GruntProgrammer who comes in to clean up the other
developers’ messes or do otherwise necessary yet unglamorous tasks.

http://wiki.c2.com/?SoftwareJanitor

e Janitors know coding style conventions and API changes.
e Janitors may not know individual subsystems deeply.

e Testing often limited to successful compilation.
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Silent compiler failure scenario

e Janitor modifies some code.
e Compilation succeeds.

e But errors may remain, if the configuration chosen does not subject the changed
lines to compilation.
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This work

Goal: Improve the reliability of the work of janitors.

Our approach: JMake

e Automate the choice of architecture and configuration

e Automate the detection of lines subjected to the compiler

Want to provide immediate feedback, via a tool that janitors can run themselves.



Example (commit 538ea4a)

diff --git a/kernel/memremap.c b/kernel/memremap.c
--- a/kernel/memremap.c

+++ b/kernel/memremap.c

@@ -114,7 +114,8 @@

{
void **xptr, *addr;
ptr = devres_alloc(devm_memremap_release, sizeof (xptr), GFP_KERNEL);
+ ptr = devres_alloc_node(devm_memremap,release, sizeof(*ptr), GFP_KERNEL ,
+ dev_to_node (dev));

if (!ptr)
return ERR_PTR (-ENOMEM);

@e -165,8 +166,8 @@

if (is_ram == REGION_INTERSECTS)
return __va(res->start);
- page_map = devres_alloc(devm_memremap_pages_release,
- sizeof (*page_map), GFP_KERNEL);
+ page_map = devres_alloc_node(devm_memremap_pages_release,
+ sizeof (xpage_map), GFP_KERNEL, dev_to_node(dev));

if (!page_map)
return ERR_PTR (-ENOMEM);



Example (commit 538ea4a)

diff --git a/kernel/memremap.c b/kernel/memremap.c
--- a/kernel/memremap.c

+++ b/kernel/memremap.c

@@ -114,7 +114,8 @@

{

0@ -165,

void **xptr, *addr;

ptr = devres_alloc(devm_memremap_release, sizeof (*ptr), GFP_KERNEL);
ptr = devres_alloc_node(devm_memremap_release, sizeof (¥ptr), GFP_KERNEL,
dev_to_node (dev));
if (!ptr)
return ERR_PTR (-ENOMEM);

8 +166,8 @@
if (is_ram == REGION_INTERSECTS)
return __va(res->start);

page_map = devres_alloc(devm_memremap_pages_release,
sizeof (*page_map), GFP_KERNEL);
page_map = devres_alloc_node(devm_memremap_pages_release,
sizeof (xpage_map), GFP_KERNEL, dev_to_node(dev));
if (!page_map)
return ERR_PTR(-ENOMEM);

e First change compiled for x86/allyesconfig.
e Second under #ifdef CONFIG_ZONE_DEVICE (29 lines up)



diff

Example (commit 538ea4a)

--git a/kernel/memremap.c b/kernel/memremap.c

--- a/kernel/memremap.c
+++ b/kernel/memremap.c

ee
{

+

ee

-114,7 +114,8 @

void **xptr, *addr;

ptr = devres_alloc(devm_memremap_release, sizeof (*ptr), GFP_KERNEL);
ptr = devres_alloc_node(devm_memremap_release, sizeof (¥ptr), GFP_KERNEL,
dev_to_node (dev));
if (!ptr)
return ERR_PTR(-ENOMEM);

-165,8 +166,8 @@

if (is_ram == REGION_INTERSECTS)
return __va(res->start);

page_map = devres_alloc(devm_memremap_pages_release,
sizeof (xpage_map), GFP_KERNEL);
page_map = devres_alloc_node(devm_memremap_pages_release,
sizeof (xpage_map), GFP_KERNEL, dev_to_node(dev));
if (!page_map)
return ERR_PTR(-ENOMEM);

e First change compiled for x86/allyesconfig.
e Second under #ifdef CONFIG_ZONE_DEVICE (29 lines up)

— JMake reports that the second is not compiled.
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Example (commit 7d32cde)

diff --git a/drivers/usb/musb/musb_core.c b/drivers/usb/musb/musb_core.c
--- a/drivers/usb/musb/musb_core.c

+++ b/drivers/usb/musb/musb_core.c

@@ -2094,6 +2094,7 Q@

#ifndef CONFIG_MUSB_PIO_ONLY

if (!musb->ops->dma_init || !musb->ops->dma_exit) {
dev_err (dev, "DMA controller not set\n");
+ status = -ENODEV;
goto fail2;
}
musb_dma_controller_create = musb->ops->dma_init;
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Example (commit 7d32cde)

diff --git a/drivers/usb/musb/musb_core.c b/drivers/usb/musb/musb_core.c
--- a/drivers/usb/musb/musb_core.c

+++ b/drivers/usb/musb/musb_core.c

@@ -2094,6 +2094,7 Q@

#ifndef CONFIG_MUSB_PIO_ONLY

if (!musb->ops->dma_init || !musb->ops->dma_exit) {
dev_err (dev, "DMA controller not set\n");
+ status = -ENODEV;
goto fail2;
}
musb_dma_controller_create = musb->ops->dma_init;

e Compilation succeeds for x86/allyesconfig, but JMake reports that the changed
line is overlooked.

e JMake finds that the changed line is compiled for ARM.



Step 1: Choice of architecture and configuration

Key observation: Compilation is architecture (arch) specific.

Available resources:

e Linux kernel cross-compilation infrastructure

e Provided sample configurations
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Step 1: Choice of architecture and configuration

Key observation: Compilation is architecture (arch) specific.

Available resources:

e Linux kernel cross-compilation infrastructure

e Provided sample configurations

Issue: Compilation is expensive

e 24 architectures supported.
e ~500 sample configurations provided.

e [nfeasible to consider them all.



Choice of architecture and configuration for . c files

Search heuristics:

1. Architecture-specific allyesconfig for arch files,
Default x86/allyesconfig for others.

2. CONFIG variable from Makefile line for the .c file

— allyesconfig for each arch that references CONFIG
— one specific config file, if any in that arch, that references CONFIG

3. All CONFIG variables in the Makefile referencing the .c file

— Same as in the previous case.



Choice of architecture and configuration for .h files

Extra challenges:

.h files cannot be compiled directly.

Need to find a .c file that is affected by the changes in the .h file.

Multiple header files may have the same name - inclusion is configuration
dependent.

— Select all .c files including files with the header name.

Header files often define macros, which are only subject to compilation if used.
— Prioritize . c files that refer to changed macros.



Step 2: Detecting which lines are subjected to the compiler

Issue: Due to config options, compilation of a changed file can succeed without
checking the changes.
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Step 2: Detecting which lines are subjected to the compiler

Issue: Due to config options, compilation of a changed file can succeed without
checking the changes.

Options:
e Check line numbers in compiled code (e.g., .1st file).

— Macro bodies move to usage points, lose line numbers.

e Mutate changed source code, look for line numbers in error messages.
— No control of the compiler’s error reporting strategy.

Our solution:

e Mutate changed source code, look for mutations in preprocessed code (.1 files).
— Final validation: produce unmutated .o file.



Example

Linux kernel commit 95ea3e760ef8:

@@ -48,0 +49,4 @@

+#define DAS16CS_AI_MUX_HI_CHAN (x) (((x) & 0xf) << 4)
+#define DAS16CS_AI_MUX_LO_CHAN (x) (((x) & 0xf) << 0)
+#define DAS16CS_AI_MUX_SINGLE_CHAN (x)(DAS16CS_AI_MUX_HI_CHAN (x) |\
+ DAS16CS_AI_MUX_LO_CHAN(x))

@@ -114 +118,2 @@

- outw(chan, dev->iobase + DAS16CS_AI_MUX_REG);
+ outw (DAS16CS_AI_MUX_SINGLE_CHAN (chan),

+ dev->iobase + DAS16CS_AI_MUX_REG);
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Example
Mutated code:

#define DAS16CS_AI_MUX_HI_CHAN(x) (((x) & 0xf) << 4)0"define:xcb_dasl16_cs.c:49"Q

#define DAS16CS_AI_MUX_LO_CHAN(x) (((x) & 0xf) << 0)"define:cb_das16_cs.c:50"Q

#define DAS16CS_AI_MUX_SINGLE_CHAN(x) (DAS16CS_AI_MUX_HI_CHAN(x) | OU"define:cb_dasl6_cs.c:51"Qg \
DAS16CS_AI_MUX_LO_CHAN(x))

Xd"noncomment:cb_dasl6_cs.c:118"Q
outw(DAS16CS_AI_MUX_SINGLE_CHAN(chan),
dev->iobase + DAS16CS_AI_MUX_REG);



Example
Mutated code:

#define DAS16CS_AI_MUX_HI_CHAN(x) (((x) & Oxf) << 4)g"define:xcb_dasl6_cs.c:49"Q

#define DAS16CS_AI_MUX_LO_CHAN(x) (((x) & 0xf) << 0)"define:cb_das16_cs.c:50"Q

#define DAS16CS_AI_MUX_SINGLE_CHAN(x) (DAS16CS_AI_MUX_HI_CHAN(x) | OU"define:cb_dasl6_cs.c:51"Qg \
DAS16CS_AI_MUX_LO_CHAN(x))

Xd"noncomment:cb_dasl6_cs.c:118"Q
outw(DAS16CS_AI_MUX_SINGLE_CHAN(chan),
dev->iobase + DAS16CS_AI_MUX_REG);

Generated .i code:

O"noncomment:cb_dasl16_cs.c:118"Q
outw(((((chan) & 0xf) << 4)"define:xcb_dasl16_cs.c:49"Q | O"define:cb_das16_cs.c:51"Q
(((chan) & O0xf) << 0)d"define:cb_dasl16_cs.c:50"Q),
dev->iobase + DAS16CS_AI_MUX_REG);
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Example
Mutated code:

#define DAS16CS_AI_MUX_HI_CHAN(x) (((x) & Oxf) << 4)g"define:xcb_dasl6_cs.c:49"Q

#define DAS16CS_AI_MUX_LO_CHAN(x) (((x) & 0xf) << 0)"define:cb_das16_cs.c:50"Q

#define DAS16CS_AI_MUX_SINGLE_CHAN(x) (DAS16CS_AI_MUX_HI_CHAN(x) | O¥"define:cb_dasl6_cs.c:51"g \
DAS16CS_AI_MUX_LO_CHAN(x))

Xd"noncomment:cb_dasl6_cs.c:118"Q

outw(DAS16CS_AI_MUX_SINGLE_CHAN(chan),
dev->iobase + DAS16CS_AI_MUX_REG);

Generated .i code:
O"noncomment:cb_dasl16_cs.c:118"Q
outw(((((chan) & 0xf) << 4)"define:xcb_dasl16_cs.c:49"Q | O"define:cb_das16_cs.c:51"Q

(((chan) & O0xf) << 0)d"define:cb_dasl16_cs.c:50"Q),
dev->iobase + DAS16CS_AI_MUX_REG);

All changes compiled in this case.
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Evaluation

Data: All commits in Linux kernel v4.3..v4.4 (2.5 months, Nov 2015 - Jan 2016)

e 11K commits considered

Test machine: 48-core AMD Opteron 6172, 2.1 GHz CPUs, 12 512KB L2 caches, and
251G RAM.

e Each commit processed on a single core.



Benefits of alternate compilations

e Most files are affected by changes that benefit from compilation for x86_64:
17091 (96%)

e 365 non-arch .c files do not benefit from compilation for x86_64,
but do benefit from compilation for some other architecture.

— Typically ARM.

e 75 non-arch .h files do not benefit from compilation for x86_64,
but do benefit from compilation for some other architecture.



Silent compiler failures

415 (3%) of .c file instances compile successfully with make allyesconfig, but not
all modified lines are subjected to the compiler.

e For 54 of these file instances, JMake ultimately succeeds, by considering other
architectures.

e For 361 file instances, JMake reports failure.

e JMake is beneficial in both cases.



Silent compiler failures

415 (3%) of .c file instances compile successfully with make allyesconfig, but not
all modified lines are subjected to the compiler.

e For 54 of these file instances, JMake ultimately succeeds, by considering other
architectures.

e For 361 file instances, JMake reports failure.

e JMake is beneficial in both cases.

Some issues:
e Never set configuration variable.
e Changes in both #ifdef and #else.
e Changes under #ifdef MODULE

e Changes in unused macros.



Y0

Y0

Execution time

100 100
80 80
60 . 60
40 S 40
20 20

0 0
0o 1 2 3 4 5 0

sec

a) make allyesconfig

100 100
80 80
60 . 60
40 < 40
20 20

0 0
1 10 100 1000 1
sec (log)

c) make .o
a0

10 100 1000
sec (log scale)

d) overall

11K commits
2.1 GHz CPU



What about janitors?

A SoftwareJanitor is a GruntProgrammer who comes in to clean up the other
developers’ messes or do otherwise necessary yet unglamorous tasks.
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What about janitors?

A SoftwareJanitor is a GruntProgrammer who comes in to clean up the other
developers’ messes or do otherwise necessary yet unglamorous tasks.

Need a more quantitative definition...



Proposed janitor characterization

Some thresholds (v3.0..v4.4):

# patches > 10
# subsystems > 20
# lists >

# maintainer patches | < 5%

File coefficient of variation (cv):

Standard deviation in commits per modified file
Mean commits per modified file.
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|dentified janitors (top 10 by lowest cv)

patches subsystems lists maintainer file cv
Javier Martinez Canillas| 118 61 30 0% 0.25
Luis de Bethencourt 104 56 31 0% 0.41
Dan Carpenter (T) 1554 400 146 0% 0.43
Julia Lawall (T) 653 255 93 0%  0.67
Shraddha Barke (I) 160 21 14 0% 0.72
Joe Perches (T) 1078 530 158 2% 0.81
Axel Lin 1044 142 49 0% 0.92
Daniel Borkmann 121 25 15 0% 1.29
Fabio Estevam 790 95 42 0% 1.29
Jarkko Nikula 173 30 14 0% 1.35

~600 commits in v4.3..v4.4
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Results on janitor patches

21 silent compilation failures on .c files, 3 on .h files
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Results on janitor patches

21 silent compilation failures on .c files, 3 on .h files

Running time on janitor commits (CDF):
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T R
1 10 100 1000

sec (log scale)
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Conclusion

JMake addresses the problem of reliably compile checking Linux kernel code
changes.

— Automatic choice of architecture/configuration.
— Feedback on the compilation of changed lines, in the presence of conditional
compilation.

Forces compilation of all changed lines on 85% of all commits and 88% of janitor
commits.

— Over 80% of commits treated in 30 seconds or less.
Potentially applicable to other software for which configurations are available.

Currently being used in our kernel constification project (ClI).
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Conclusion

JMake addresses the problem of reliably compile checking Linux kernel code
changes.

— Automatic choice of architecture/configuration (Linux specific heuristics).
— Feedback on the compilation of changed lines, in the presence of conditional
compilation (Linux independent methodology).

Forces compilation of all changed lines on 85% of all commits and 88% of janitor
commits.

— Over 80% of commits treated in 30 seconds or less.
Potentially applicable to other software for which configurations are available.

Currently being used in our kernel constification project (ClI).
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Conclusion

JMake addresses the problem of reliably compile checking Linux kernel code
changes.

— Automatic choice of architecture/configuration (Linux specific heuristics).
— Feedback on the compilation of changed lines, in the presence of conditional
compilation (Linux independent methodology).

Forces compilation of all changed lines on 85% of all commits and 88% of janitor
commits.

— Over 80% of commits treated in 30 seconds or less.
Potentially applicable to other software for which configurations are available.

Currently being used in our kernel constification project (ClI).

http://jmake-release.gforge.inria.fr
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