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Abstract

Software architectures must frequently evolve to cope
with changing requirements, and this evolution often im-
plies integrating new concerns. Unfortunately, existing ar-
chitecture description languages provide little or no sup-
port for this kind of evolution. The software architect must
modify the architecture manually, which risks introducing
inconsistencies.

In previous work, we have proposed the TranSAT frame-
work, which provides a pattern construct for describing new
concerns and their integration into an existing architecture.
As the interaction between the new concern and the existing
architecture may be complex, it is essential that the frame-
work ensure the coherence of the resulting architecture. In
this paper, we introduce a language for specifying patterns
and verifications that ensure that the concern represented
by a pattern can be safely integrated into an existing archi-
tecture. The verifications comprise static verifications that
check coherence properties before the architecture is modi-
fied and dynamic verifications that focus on the parts of the
architecture that are affected by the pattern. As a result of
these verifications, patterns can be provided as a commod-
ity, such that a software architect can confidently apply a
pattern obtained from a third-party developer.

1 Introduction

Software architecture is a key concept in the design of a
complex system. An architecture models the structure and
behavior of the system, including the software elements and
the relationships between them. While architectures were
originally specified informally [1, 7], recent years have seen
the creation of a number of Architecture Description Lan-
guages (ADLs) [12], which enable an architect to create
an architecture by constructing and combining increasingly
complex elements. Nevertheless, the dimensions of compo-
sition and interaction provided by these languages are not
sufficient to express concerns such as security that crosscut

the software architecture. In these cases, integrating a new
concern requires invasively modifying the ADL specifica-
tion, at all points affected by the concern. These modifi-
cations are low-level, tedious and error-prone, making the
integration of such concerns difficult.

To address the complexity of integrating a new con-
cern into a software architecture, we have developed the
TranSAT framework [4]. In the spirit of Aspect-Oriented
Programming (AOP), TranSAT isolates the description of
each concern in a separate architecture construct, the pat-
tern, that is automatically integrated into an existing soft-
ware architecture by a weaver. Analogous to an aspect, a
pattern consists of the new architecture fragment to be in-
tegrated, a description of where this fragment can be ap-
plied, and a specification of the transformations that should
be performed to connect this new fragment to the existing
architecture. As a pattern can specify updates to multiple
elements in an existing architecture, it is suitable for ex-
pressing crosscutting concerns.

In specifying the integration of a new concern into an
existing architecture, the coherence of the result is a key is-
sue. Because architectures are complex, many transforma-
tions may be needed to integrate a new concern, making the
specification of the integration highly error prone. Although
the global coherence of an architecture can often be checked
once the architecture is complete, these verifications are ex-
pensive as they consider the entire architecture. Further-
more, the interdependencies between architecture elements
may make it difficult to identify the source of any error at
this point.

In this paper, we address the coherence issue by propos-
ing a language for specifying TranSAT patterns that en-
sures a number of coherence properties. This language is
carefully designed to make certain erroneous transforma-
tions impossible to express and allows static verification of
additional coherence properties before pattern integration.
There remain, however, some properties that can only be
checked dynamically, when integrating a pattern into an ex-
isting architecture. For these properties, TranSAT uses in-



formation found in the pattern specification to limit the cost
of the checks, by focusing on the parts of the architecture
affected by the pattern, and to present error messages in
terms of the pattern elements. Overall, this approach pro-
vides verification early in the architecture development pro-
cess, to enable the architect to rapidly and safely integrate
new concerns.

The rest of this paper is organized as follows. Section 2
gives an overview of the TranSAT framework through an
example, and raises some issues related to the coherence of
concern integration. Section 3 presents the proposed lan-
guage for specifying patterns, and Section 4 describes the
associated verifications. Finally, Section 5 describes some
related work and Section 6 concludes and gives some future
work.

2 Overview of TranSAT

In this section, we present an overview of the TranSAT
framework, illustrated in Figure 1, through the example of
a banking software architecture. We first describe the archi-
tecture and then show how to use the TranSAT framework to
extend this architecture with an atomicity concern. Finally,
we consider some of the issues that confront an architect
when specifying a crosscutting concern.

2.1 Example

Our example banking application manages the withdrawal
and deposit of money between savings and checking ac-
counts. This application is represented by the software ar-
chitecture shown in Figure 2, which is specified using the
SafArchie ADL [3]. Like other ADLs, such as Darwin [10]
or SOFA [16], SafArchie provides structural and behavioral
descriptions of component interfaces. The structural de-
scription defines the components and the bindings between
them, while the behavioral description specifies the behav-
ioral interactions of each component with its environment.

Figure 2(a) gives the structural description of the bank-
ing architecture. The structure is described in terms of
composites (Bank, Clients), components (Manager,
Savings, Checking), ports (p1 to p5), delegated ports
(dp1 to dp3) and bindings. Ports contain operations; for
example, the operationswithdraw and deposit are pro-
vided by the ports p4 and p5. A port must contain at least
one operation, must be part of exactly one component, and
must be bound to exactly one other port, in some other com-
ponent. Operations are either provided or required. Bound
ports must contain compatible operations; for example, port
p2 requires the operations provided by port p4. Delegated
ports do not contain any operations; they define the interface
of a composite, exporting the operations of the composite’s
components.

Figure 1. Overview of TranSAT

Figure 2(b) gives the behavioral description of one of
the components, Manager. The behavior is specified in
terms of an Input/Output Automaton [9] that describes the
sequences of messages that a component may receive and
emit. The notation used in these automata is as follows. For
a provided operationop1, the message ?op1 represents the
receipt of a request and the message !op1$ represents the
sending of the response. ?op1 must precede !op1$, but
they can be separated by any number of messages, repre-
senting the processing of op1. For a required operation
op2, the message !op2 represents the sending of a call and
the message ?op2$ represents the receipt of the response.
Sending a call is a blocking operation, and thus !op2 must
always be immediately followed by ?op2$. Using this no-
tation, the behavior shown in Figure 2(b) specifies that when
the Manager receives a transfer request, it makes a with-
drawal from one of the two accounts and a deposit to the
other one.

2.2 Integrating an atomicity concern us-
ing the TranSAT framework

The TranSAT framework manages the integration of a new
concern, represented as a software architecture pattern, into
an existing architecture, referred to as a basis plan. The
software architecture pattern represents the new concern in
terms of a plan, a join point mask, and a set of transforma-
tion rules. The plan describes the structure and behavior of
the new concern. The join point mask defines the structural
and behavioral requirements that the basis plan must satisfy
so that the new concern can be integrated. The transforma-
tion rules specify the means of integrating the new plan into
the basis plan. Given a software architecture pattern, the ar-
chitect specifies where it should be added to the basis plan.
The TranSAT weaver then checks that the selected point in
the basis plan matches the join point mask, instantiates the
transformation rules according to the architectural entities
matched by the join point mask, and executes the instanti-
ated transformation rules to integrate the new concern into



Figure 2. Banking software architecture

Figure 3. Architecture pattern for the atomicity concern

the basis plan. These features of TranSAT are illustrated in
Figure 1.

As an example of the use of these constructs, we con-
sider how to make the banking transactions atomic. This
concern is crosscutting, in that it affects both the Manager
and the savings and checking accounts. The architecture
pattern related to atomicity is shown in Figure 3. The new
plan corresponding to the atomicity concern keeps a log of
certain operations and enables these operations to be rolled
back when an error occurs. Specifically, the Log compo-
nents provide operations to keep a log and to retrieve infor-
mation from this log, and the Coordinator component
triggers rollbacks when appropriate, guaranteeing the atom-
icity property. The join point mask specifies that this plan
can be integrated in a context consisting of one component
Cm1 attached to two other componentsCm2 and Cm3. Some
constraints (not shown) are also placed on the operations in
the ports connecting these components. In the banking soft-
ware architecture, the join point mask is compatible with the
integration site consisting of the Manager, Savings and
Checking components. Finally, the transformation rules
connect the ports of the plan to the ports of the selected inte-

gration site, and make other appropriate adjustments. In the
case of the banking architecture, the result of the integration
is shown in Figure 4.

The plan, join point mask, and transformation rules
shown in Figure 3 are expressed using the language that we
propose for the TranSAT framework, and that is described
in detail in the rest of this paper. In Figure 3, some parts
of these specifications are represented as diagrams, for con-
ciseness.

2.3 Issues

To specify the integration of a crosscutting concern, the ar-
chitect must describe how to modify the component struc-
ture, behavior, and interfaces. This task is highly error
prone, as many modifications are typically required, and
these modifications can have both a local impact on the
modified elements and a global impact on the consistency
of the architecture.

Typically, a component model places a number of re-
quirements on local properties of the individual architec-
tural elements. For example, in SafArchie, it is an error to



Figure 4. Transformed banking software architecture

break a binding and then leave the affected port unattached,
or to remove the last operation from a port, and then leave
the port empty. The construction of the behavior automaton
associated with each component is particularly error prone,
because it must be kept coherent with the other elements
of the component and because of the complexity of the au-
tomaton structure. For example, in SafArchie, all of the
operations associated with the ports of a component must
appear somewhere in the component’s behavior automaton.
When the ADL separates the structural and behavioral de-
scriptions, it is easy to overlook one when adding or re-
moving operations from the other. An automaton must also
describe a meaningful behavior; at a minimum that for each
operation, a call precedes a return and every call is eventu-
ally followed by a return from the given operation.

The architecture must also be globally coherent. The
most difficult aspect of this coherence is in the behavior of
the architecture. So that the application can run without
deadlock, it must be possible to synchronize the behavior of
each component with that of all of the components to which
it is bound by its ports. Any change in the behavior of a sin-
gle component can impact the way it is synchronized with
its neighbors, which in turn can affect the ability to synchro-
nize their behaviors with those of other components in the
architecture. The interdependencies between behaviors can
make the source of any error difficult to determine.

3 The TranSAT’s Transformation Language

In this section we present the TranSAT’s transformation lan-
guage for specifying the elements of a pattern: plan, join
point mask and transformation rules. The component as-
sembly shown in Figure 3 (a) is an example of a plan, show-
ing only structural information. We present the join point
mask and the transformation rules in the rest of this section.
The use of the language is illustrated through the definition
of the atomicity concern pattern.

3.1 The join point mask

The join point mask describes structural and behavioral pre-
conditions that a basis plan must satisfy to allow the integra-
tion of the new concern. It consists of a series of declara-
tions specifying requirements on the structure and behavior
of the components available at the integration site.

Figure 5 illustrates a join point mask suitable for use with
the atomicity plan (Figure 3 (a)). For readability, some of
the declarations are elided or represented by the diagram
at the top of the figure. The diagram specifies that some
component Cm1 must be connected to two other compo-
nents Cm2 and Cm3. The remaining declarations define a se-
ries of placeholders for operations (line 3), specify whether
these operations must be declared as provided or as required
(lines 4-11) and specify that they must be associated with
the ports pm1 to pm4 (lines 12-15). Finally, lines 16-19
ensure that the operation opm1 is the inverse of operation
opm5 in the bound port, and similarly for opm2 and opm6,
opm3 and opm7, and opm4 and opm8. Operations are in-
verse if they have the opposite polarity, the same name and
compatible types. In the banking architecture, these con-
straints would, for example, allow the architect to select the
required operation withdraw in port p2 as opm1 and the
provided operation withdraw in port p4 as opm5. In this
example, the join point mask does not specify any behav-
ioral requirements. If needed, the constraints on the be-
havior of a component mask can be specified in terms of
a sequence of messages.

3.2 The transformation rules

The transformation rules describe precisely how to integrate
the new plan into a basis plan. They specify the various
transformations to perform on the elements defined in the
new plan and the join point mask, as well as their appli-
cation order. The language provides two kinds of transfor-
mation primitives: computation transformation primitives
and interaction transformation primitives. The computation
transformation primitives specify the introduction of new



Figure 5. Join point mask definition

ports and operations in primitive components, in order to
adapt the component behavior. The interaction transforma-
tion primitives manage the insertion and deletion of compo-
nent bindings and manage the composite content, in order
to reconfigure the software architecture. Overall TranSAT
is targeted towards introducing new concerns into existing
architectures rather than removing existing functionalities.
Thus, the language has been designed to prevent transfor-
mations that remove existing behaviors.

Computation transformation primitives

Table 1 shows the primitives used to manage the structural
transformation of primitive component interfaces. These
primitives allow the architect to create new ports and op-
erations, to destroy empty ports and to move an operation
from one port to another. We now present these primitives
in more detail.

Port Operation

create Port Pr in Cp;
Operation Or = op in Pr;
Operation Or1 = op replaces Or2;

destroy Pr.destroy(); N/A
move N/A Or.move(Pr);

Cp: ComponentRef, Pr: PortRef, Or: OperationRef,
op ::= Or | inverse(Or), N/A: Not applicable

Table 1. Computation transformations

Port modifications The primitive Port Pr in Cp cre-
ates a new port Pr and attaches it to the componentCp. The
primitive Pr.destroy() destroys port Pr, which must
be a port matched by the join point mask. As illustrated

by the use of * in lines 12-15 of Figure 5, there may be
incomplete information about the contents of such a port.
The destroy primitive only actually destroys the port if
it contains no operations. In this case, any binding associ-
ated with the port is destroyed as well. Note that, there is
no means of moving a port to another component. Indeed,
since a port may contain some operations, moving the port
to another component would imply removing part of the be-
havior of the original component, which is not the intent of
the TranSAT framework.

Operation modifications Two primitives enable the archi-
tect to create an operation: Operation Or = op in
Pr adds a new copy of the operation op to the port Pr
and Operation Or1 = op replaces Or2 replaces
the operation Or2 by a new copy of the operation op and
names it Or1. In the latter case, the new and old operations
op and Or2 must have the same polarity. The language also
allows the architect to move an operation from one port to
another if these ports are on the same component. No prim-
itive is provided to destroy an operation or to move it to an-
other component, to guarantee that no part of a component
behavior can be removed.

Adding an operation to a port has an impact on the be-
havior of the associated component. When a new copy
of an operation is added to a port using the operation
Operation Or = op in Pr, the architect must ex-
plicitly specify how the messages associated with the newly
added operationop fit into the behavior of the component to
which the operation is attached. The transformation of the
behavior automaton is specified using the pattern-matching
syntax template => result. Such a rule inserts the mes-
sages associated with the new operation, op, before, af-
ter, or around the calling or responding messages associated
with some existing operation, m. The template specifies the
sequence of messages on m, possibly separated by any se-
quence of messages, x. The result describes how messages
associated with the new operation, op, are interleaved with
this sequence. On the contrary, when one operation replaces
another, the behavior update is implicit. The new operation
simply inherits the old one’s role in the behavior of the as-
sociated component. When an operation is moved from one
port of a component to another, there is no effect on the ac-
tual behavior, although the name of the operation in the au-
tomaton, as illustrated in Figure 2 (b), is implicitly updated
to reflect its new port.

The following lines illustrate the use of the automaton
transformation rules:

1?m → x → !m$ ⇒ ?m → ! op → ? op$ → x → !m$ ;
2?m → x → !m$ ⇒ ?m → ( ! op → ? op$ → x | x ) → !m$ ;

In line 1, the template describes the receipt of a call to m fol-
lowed by any number of messages, followed by the sending



of m’s response. The result specifies that following the re-
ceipt of the call to m, the component sends a call to op and
waits for the response before performing any further com-
putation. The use of the new operation op at runtime can
also be conditional. In line 2, the transformed component
either calls op, waits for the response, and then performs
the sequence x, or performs x alone, ignoring the added op
operation.

Interaction transformation primitives

The interaction transformation primitives manage the re-
configuration of the software architecture. As shown in Ta-
ble 2, operators are provided to create and destroy bindings,
to create composites either at the top level or within another
composite, and to move one composite Cr1 or one com-
ponent Cp into another composite Cr2. There is no prim-
itive to create a component, since new components should
be specified in the plan. The destruction of a component or
a composite is also not allowed in order to prevent behavior
information from being removed. Finally, as a binding does
not itself contain any information, there is no need for an
operation to move bindings.

Binding Composite Component

create
Binding Br = Composite Cr;

N/A
{Pr1, Pr2}; Composite Cr1 in Cr2;

destroy Br.destroy(); N/A N/A
move N/A Cr1.move(Cr2); Cp.move(Cr2);

Cp: ComponentRef, Cr: CompositeRef, Pr: PortRef,
Br: BindingRef, N/A: Not applicable

Table 2. Interaction transformations

Example

We use the atomicity example to illustrate the use of the
computation and interaction transformation primitives. In
this example, integrating the new plan requires (i) interpos-
ing the Coordinator component between the original
component Cm1 (instantiated as Manager in the banking
case) and the operations that are to be made atomic, and (ii)
inserting the Log components in front of the components
Cm1 and Cm2 providing these operations (instantiated as
Savings and Checking in the banking case). Figure 6
shows the rules that carry out these transformations.

In the join point mask, the operations to be made atomic
are specified to be in a port that may contain other opera-
tions, e.g., port pm1 contains the operations opm1, opm2,
and some unknown list of operations * (line 12 in Figure 5).
So that the atomicity concern does not have to take into ac-
count these other operations, lines 2-11 in Figure 6 move the
operations to become atomic into newly created ports, p18

1// Cm1 transformation
2P o r t p18 i n Cm1;
3opm1 . move ( p18 ) ;
4opm2 . move ( p18 ) ;
5... Similarly for the port p19 and the operation masks opm3 and opm4 of pm2
6
7// Cm2 transformation
8P o r t p20 i n Cm2;
9opm5 . move ( p20 ) ;
10opm6 . move ( p20 ) ;
11... Similarly for the port p21 in Cm3 and the operation masks opm7 and opm8 of pm4
12
13// Port destruction
14pm1 . d e s t r o y ( ) ;
15pm3 . d e s t r o y ( ) ;
16... Similarly for the ports pm2 and pm4
17
18// Coordinator transformation
19O p e r a t i o n o6a = i n v e r s e ( opm1 ) r e p l a c e s p6 . invoke1 ;
20O p e r a t i o n o6b = i n v e r s e ( opm2 ) r e p l a c e s p6 . invoke2 ;
21... Similarly for the operations of the port p7
22
23O p e r a t i o n o10a= i n v e r s e ( opm5 ) r e p l a c e s p10 . invoke1 ;
24O p e r a t i o n o10b= i n v e r s e ( opm6 ) r e p l a c e s p10 . invoke2 ;
25... Similarly for the operations of the port p11
26
27// Introduction of p16 within Cm2
28P o r t p16 i n Cm2;
29O p e r a t i o n o16 = i n v e r s e ( p13 . l o g ) i n p16 ;
30?opm5 → x → ! opm5$
31⇒ ?opm5 → x → ! o16 → ? o16$ → ! opm5$ ;
32?opm6 → x → ! opm6$
33⇒ ?opm6 → x → ! o16 → ? o16$ → ! opm6$ ;
34
35// Introduction of p17 within Cm3
36... Similarly to Cm2 for the transformation of the port p17
37
38// Component introduction
39C o o r d i n a t o r . move (Cm1. p a r e n t ) ;
40Log1 . move (Cm2 . p a r e n t ) ;
41Log2 . move (Cm3 . p a r e n t ) ;
42
43// Binding creation
44Bind ing b6 = {p18 , p6 } ;
45Bind ing b7 = {p19 , p7 } ;
46
47Bind ing b10 = {p10 , p20 } ;
48Bind ing b11 = {p11 , p21 } ;
49
50Bind ing b13 = {p13 , p16 } ;
51Bind ing b15 = {p15 , p17 } ;

Figure 6. Transformation rules for the atomic-
ity concern

to p21. This transformation may cause the ports matched
by the join point mask to become empty. Accordingly,
lines 13-16 apply the destroy operation to these ports,
causing them to be destroyed if they are empty. When the
atomicity concern is integrated into the banking software
architecture, the ports matched by pm1 to pm4 are not de-
stroyed because they contain the operation getBalance.

The ports of the Coordinator are then updated with
references to the operations to be made atomic. For
each port, p6, p7, p10, and p11, the generic opera-
tions invoke1 and invoke2 are replaced by the in-
verses of the corresponding operations in the ports p18 to



p21 (lines 18-25). These transformations implicitly update
the Coordinator’s behavior automaton by replacing the
messages associated with the invoke operations by the
messages associated with the new operations.

To insert the Log components in front of Cm2 and Cm3,
new ports must be added to Cm2 and Cm3 and these ports
must be instantiated with references to the log operation.
We focus on the transformation of Cm2, as the transforma-
tion of Cm3 is similar. Lines 28-29 add the port p16 and
copy the require counterpart of the Log component’s
log operation into this port. Because log is a new op-
eration for Cm2, we must specify where it fits into Cm2’s
behavior. Lines 30-33 specify that Cm2 sends a call to this
new operation whenever it is about to return from either of
the operations to be made atomic.

The remaining rules transform the interaction between
components. Lines 39-41 add the components of the plan
to the basis plan. In these rules, for any outermost com-
ponent or composite reference C in the join point mask,
C.parent represents the parent of the element to which
C is matched in the basis plan. As the component model
is arborescent, each component or composite has at most
one parent. If there is no parent, the enclosing transforma-
tion is not performed. Finally, lines 43-50 connect the com-
ponents at the various ports. TranSAT automatically adds
delegated ports, e.g., dp4 in Figure 4, as needed. Apply-
ing these transformation rules to the join point between the
Manager, Savings and Checking components shown
in Figure 2 (a) produces the software architecture shown in
Figure 4 (structural information only).

4 Safe Architecture Transformation

A goal of TranSAT is to ensure that the integration of a
new concern produces a valid software architecture. Ac-
cordingly, TranSAT statically checks various properties of
the pattern at creation time and dynamically checks that the
pattern is compatible with the insertion context when one is
designated by the architect.

4.1 Static properties and checks

Given a pattern, TranSAT first checks that its various ele-
ments are syntactically and type correct. For example, a
join point mask must declare that a port contains elements
of type Operation and a Binding transformation must
connect two ports. TranSAT then performs specific verifi-
cations for the plan, the join point mask, and the transfor-
mation rules.

Plan TranSAT requires that the plan be a valid software
architecture according to the component meta-model of Saf-
Archie, except that it may contain unattached ports. For
example, TranSAT checks that all bindings connect ports

that contain compatible operations and that the automata
describing the behaviors of the various components in the
plan can be synchronized.

Join point mask The variables declared by the join point
mask represent the fragments of the basis architecture that
can be manipulated by the transformation rules. Unlike the
plan, the join point mask need not be a complete architec-
ture specification and thus TranSAT does not check that e.g.
operations are specified for all ports or automata are syn-
chronizable. These properties are, however, assumed to be
satisfied by the elements matched in the basis architecture.
TranSAT does verify the consistency of the information that
is given, for example that any automata provided use oper-
ations in a manner consistent with their polarity.

Transformation rules TranSAT ensures the safety of the
transformation process by a combination of constraints on
the transformation language and verifications performed
statically on the transformation rules.

Several features of the transformation language have
been designed to prevent the architect from expressing un-
safe transformations. For example, the SafArchie com-
ponent meta-model requires the insertion of delegated
ports whenever a binding crosses a composite boundary.
TranSAT introduces these delegated ports automatically, re-
lieving the architect of the burden of identifying the com-
posites between two ports, reducing the size of the trans-
formation specification, and eliminating the need to fully
specify composite nesting in the join point mask. The Saf-
Archie component model also requires that each architec-
tural element have a parent, except for the outermost com-
ponents or composites. The transformation language en-
forces this constraint by combining the creation of a new
element with a specification of where this element fits into
the architecture; for example, Port Pr in Cr both cre-
ates a new port Pr and attaches this port to the compos-
ite Cr. Finally, a common transformation is to replace an
operation in a port by another operation, which requires
updating both the port structure and the automaton of the
associated component. The transformation language com-
bines both operations in the declaration Operation Or1

= op replaces Or2.
Other safety properties are not built into the syntax of

the transformation language, but are checked by analysis of
the transformation rules. We consider the property that ev-
ery architectural element, except the operations, must have
some subelements. For example, a component must con-
tain some ports and a port must contain some operations.
This property is checked by a containment analysis, that
also checks the usefulness of each transformation rule; for
example, it is not allowed to move an element just to move it
again. The analysis simulates the execution of the transfor-
mation rules on the various elements identified by the plan



Creating a port:
ρ[Cp 7→ (π, ζ)], J, P ` Port Pr in Cp
→ ρ[Pr 7→ (Cp, ∅), Cp 7→ (π, ζ ∪ {Pr})], J, P

(1)

Adding an operation to a port:

Or2 6∈ ζ2
ρ[Pr 7→ (π2, ζ2)], J, P ` Operation Or1 = Or2 in Pr
→ ρ[Or1 7→ (Pr, ∅), Pr 7→ (π2, ζ2 ∪ {Or1})], J, P

(2)

Or2 6∈ ζ2
ρ[Pr 7→ (π2, ζ2)], J, P ` Operation Or1 = inverse(Or2) in Pr
→ ρ[Or1 7→ (Pr, ∅), Pr 7→ (π2, ζ2 ∪ {Or1})], J, P

(3)

Moving an operation between ports:

Or ∈ J π2 = π3

ρ[Or 7→ (π1, ζ1), Pr 7→ (π2, ζ2), π1 7→ (π3, ζ3)], J, P ` Or.move(Pr)
→ ρ[Or 7→ (Pr, ζ1), Pr 7→ (π2, ζ2 ∪ {Or}), π1 7→ (π3, ζ3 − {Or})], J − {Or}, P

(4)

Figure 7. Excerpt of the containment analysis

and the join point mask. At the end of the analysis, every el-
ement must have at least one subelement except operations
and join point mask elements for which no subelements are
initially specified.

The containment analysis is defined in terms of judg-
ments of the form ρ, J, P ` s → ρ′, J ′, P ′. The environ-
ment ρ maps each element to a tuple (π, ζ) indicating its
parent π and its children ζ. The lists J and P indicate the
elements in the join point mask and the plan, respectively,
that have not yet been moved. To ensure usefulness, move
and destroy are only permitted on these elements.1 The
term being analyzed is represented as s. The results of the
analysis are a new environment ρ′ and lists J ′ and P ′. Rules
are expressed as inferences, as shown in Figure 7, with hy-
potheses above a horizontal bar and the judgement that fol-
lows from these hypotheses below the horizontal bar. The
horizontal bar can be omitted if there are no hypotheses.
The notation ρ[x 7→ (π, ζ), ...] represents the extension of
the environment ρ by the environment [x 7→ (π, ζ), ...]. The
analysis rules are applied successively to each of the trans-
formation rules, starting at the first one with values of ρ, J ,
and P that correspond to the information found in the plan
and the join point mask. Each subsequent transformation
rule is analyzed with respect to the ρ′, J ′, and P ′ produced
by the analysis of the previous one.

Figure 7 shows the rules associated with ports. The rule
for creating a port (rule (1)) updates ρ with an entry for the
new port and updates its parent component with the new
port as an additional child. The rules for adding an opera-
tion to a port (rules (2) and (3)) are similar, but additionally
check that the operation or its inverse is not already part

1move and destroy are only allowed on elements named in the join
point mask, i.e., those in the list J , as these elements represent the existing
architecture and are thus not under the control of the developer of the pat-
tern. Composites and components can also be moved out of the plan, e.g.,
to be placed within a composite created by the transformation rules.

of the destination port. Finally, the rule for moving an op-
eration from one port to another (rule (4)) checks that the
operation is part of the join point mask and that the parent
component of the new port is the same as the parent com-
ponent of the current port. In the result, the operation is
removed from the list of elements in the join point mask
to prevent the operation from being moved yet again. A
transformation is accepted by the analysis if in the final en-
vironment, for every element other than an operation or an
element in the join point mask starting with an empty list of
children, the list of children ζ is nonempty.

A similar analysis checks various properties of bindings:
every port is connected to some other port by a binding, the
connected ports are not part of the same component, the op-
erations of the connected ports are compatible, etc. Another
analysis checks that for each component, the automaton and
the set of operations in the various ports are kept consistent.

4.2 Dynamic checks

An architect integrates a pattern by designating a fragment
of the existing architecture to which the pattern should be
applied. TranSAT checks that the fragment matches the join
point mask, to ensure that the fragment satisfies the assump-
tions under which the safety of the transformation rules has
been verified. However, because the join point mask does
not describe the entire basis architecture, the static checks
of the different elements of the pattern are not sufficient to
guarantee the correct integration of a new plan into a basis
plan. Consequently, dynamic verifications of some struc-
tural and behavioral properties of the architecture are per-
formed during the integration process.

The dynamic structural verification consists of checking
the compatibility between the newly connected ports, ac-
cording to the definition of the port compatibility of Saf-
Archie. Concretely, based on transformation rules that have



been applied, the analysis builds a list containing the newly
created connections as well as the connections between
ports that have been modified by the transformations. For
each of these connections, the connected ports are verified
to contain compatible operations. The other connections
do not need to be checked as they are not affected by the
transformations and their correctness has been previously
verified during the analysis of the basis plan or the pattern
plan.

Adding new components and behaviors to a fragment of
an architecture can change the synchronization at the inter-
face of the fragment, and thus have an effect on the syn-
chronization of the rest of the architecture. The use of a
software architecture pattern localizes the modifications to a
specified fragment of the existing architecture. The process
of resynchronization thus starts from the affected fragment
and works outward until reaching a composite for which the
interface is structurally unchanged and the new automaton
is bisimilar to the one computed before the transformation.
The bismilarity relation ensures that the transformation has
no impact on the observable behavior of the composite, and
thus the resynchronization process can safely stop [15].

If the transformation of the architecture fails, any
changes that were made must be rejected. Before perform-
ing any transformations, TranSAT records enough informa-
tion to allow it to roll back to the untransformed version in
this case.

4.3 Assessment

In Section 1, we observed that the architect who integrates a
new concern with the original version of TranSAT, without
the new transformation language, can use the tools of Saf-
Archie to check the validity of the resulting architecture af-
ter the integration is complete. This approach, however, can
give imprecise error messages, because the resulting archi-
tecture does not reflect the transformation step that caused
the problem, and can be time consuming, due to the automa-
ton synchronization that is part of this validation process.
In this section, we briefly describe how TranSAT addresses
these issues.

Because the static verifications have a global view of the
transformations that will take place, they can pinpoint the
transformation rules that can lead to an erroneous situation.
For example, if an operation is moved from a port of the
join point mask, the port may become empty, resulting in
an erroneous software architecture. While SafArchie would
simply detect the empty port, TranSAT can, via an analy-
sis of the complete set of transformation rules, detect that
there is a risk that a port contains only one operation, that
a move is performed on the operation in this port, and that
a destroy is not subsequently applied to this port. Using
this information, TranSAT can inform the architect of prob-
lems in the transformation rules, before any actual modifica-

tion of the architecture has taken place. Obtaining this feed-
back early in the integration process can reduce the overall
time required to correctly integrate the new concern.

Because the dynamic verifications are aware of the exact
set of components that are modified by the integration, they
can target the resynchronization of automata accordingly.
As synchronization is expensive, reducing the amount of
resynchronization required can reduce the amount of time
required to integrate a new concern, making it easier for the
architect to experiment with new variants.

5 Related Work

Previous work in the software architecture domain has
shown the interest of using ADLs to formally establish the
consistency of a software architecture [1, 7, 12]. For exam-
ple, the ADLs Wright [2] and Darwin [10] support the spec-
ification and analysis of component communication proto-
cols. To analyze a component assembly, Wright defines a
set of standard consistency and completeness verifications
that are defined precisely in terms of an underlying CSP
(Communicating Sequential Processes) model, and can be
checked using standard model checking technology. Dar-
win models dynamic distributed systems and uses the FSP
(Finite State Process) language to specify system behav-
ior [11]. Both ADLs illustrate the interest of specifying
the structure and behavior of components and connectors.
However, such ADLs are commonly conceived around the
dimensions of composition and interaction. Consequently,
concerns that crosscut several architectural elements cannot
be easily specified and incrementally integrated.

The aspect paradigm provides another way to specify a
composition semantics between software modules. Origi-
nally targeted to the implementation phase of the software
life-cycle, there has been recently some investigation of the
use of aspects at the design stage. Called Early Aspects or
Aspect Oriented Modeling [14], this work focuses on mod-
ularizing crosscutting design properties. A global model
results from merging (or “weaving”) these aspects. For ex-
ample, the Composition Pattern [5] combines a collection of
subject-oriented models for composing separate and over-
lapping concerns in UML (Unified Modeling Language) di-
agrams. Other approaches promote the use of a transforma-
tion language inspired by Model Driven Architecture [13]
to specify the weaving. For example, the C-SAW weaver
framework provides a generalized transformation engine for
manipulating models [8]. Like these approaches, TranSAT
proposes to define a global software architecture from a set
of plans, whose composition is specified using a dedicated
transformation language. However, contrary to the other ap-
proaches, the language used by TranSAT is designed to be
able to guarantee the consistency of the transformed soft-
ware architecture.



6 Conclusion

The TranSAT approach offers a solution to relieve the archi-
tect of manually integrating a new concern into a software
architecture. This solution consists of factorizing the im-
plementation of the new concern into a separate unit, called
a pattern, that can be independently understood and auto-
matically integrated at multiple integration sites. To im-
prove the safety of this approach we have designed a pat-
tern language that prevents some erroneous concern inte-
grations from being expressed and detects others by static
and dynamic verifications. The resulting safety guarantees
mean that an architect can use a pattern provided by a third
party developer with confidence that the concern will be in-
tegrated correctly.

These tools and verifications have been implemented to
form a complete software architecture development envi-
ronment. Future work includes the investigation of extend-
ing the framework to target other ADLs, such as AADL [6],
Wright and Darwin. This extension will require studying
the verifications that can be performed on these other ADLs
during the transformation process.
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