
Applying the B Formal Method to the
Bossa Domain-Specific Language

Jean-Paul Bodeveix
Mamoun Filali

IRIT Université Paul Sabatier

{bodeveix,filali}@irit.fr

Julia L. Lawall
DIKU, University of Copenhagen

julia@diku.dk

Gilles Muller
OBASCO Group, École des Mines

de Nantes-INRIA, LINA

gilles.muller@emn.fr

1. Introduction
Domain-specific languages (DSLs) are used in both indus-
try and research, in complex areas as varied as data mining
[5], graphics [7], and device driver development [10]. A DSL
provides high-level domain-specific abstractions that encap-
sulate domain expertise, thus making programming easier
and less error-prone. Such languages also promise to be more
amenable to verification, as the set of language abstractions
can be designed to be easy to relate to desired properties and
can be constrained to avoid problematic constructs such as
unbounded loops. Nevertheless, many DSLs provide no ver-
ification, and those that do typically either rely on verifi-
cation provided by a general-purpose host language or use
ad hoc analyzers. The former approach is, however, limited
to the facilities of the host language, which are rarely ad-
equate for expressing and checking domain-specific proper-
ties, while the latter puts a huge burden on the DSL devel-
oper. We observe that many powerful verification systems
have been developed in the formal methods community. Our
goal is to realize the potential for verification of DSLs by har-
nessing these resources in designing and implementing DSL
verifiers.

To begin to bridge the gap between existing approaches
to program verification and DSLs, we are applying the B
formal method [1] to the Bossa DSL [9]. B is a refinement-
based formal method that has been used for the development
of safety critical software, especially in the domain of rail-
way systems [2, 3]. The main feature of a B development
process is that it proves that the final code implements its
formal specification. Bossa is a DSL for specifying operat-
ing system (OS) kernel process scheduling policies. It has
been implemented in the OSes Linux and Chorus. It has a
formal semantics, and an ad hoc verifier that checks that a
Bossa scheduling policy conforms to a model of the schedul-
ing requirements of the target OS. This verifier is, however,
hand-coded and complex, and thus hard to maintain as the
language or set of desired properties evolves. Furthermore,
it only checks the interaction between the scheduling policy
and the OS, and is thus not suitable for checking properties
of the implemented algorithm, such as liveness and fairness.
In this paper, we show how B can be used to replace the ad
hoc verifier of Bossa. We are currently working on extend-
ing this formal development to account for a wider range of
properties.

The rest of this paper is organized as follows. Sec-
tion 2 provides an overview of Bossa. Section 3 gives a
brief overview of the B method. Section 4 elaborates the
B development of a Bossa specification and describes how

1 scheduler RM = {
process = { time period; ... }
states = {
RUNNING running : process;

5 READY ready : select queue;
READY yield : process;
BLOCKED blocked : queue;
BLOCKED computation_ended : queue;
TERMINATED terminated;

10 }
ordering_criteria = { lowest period }

handler(event e) {
On block.* { e.target => blocked; }

15
On unblock.preemptive {
if (e.target in blocked) {
if ((!empty(running)) && (e.target>running)) {
running => ready;

20 }
e.target => ready;
}
}
...

25 }
}

Figure 1. Excerpts of the Bossa Rate Monotonic policy

some of the proof obligations generated by the B develop-
ment can be discharged automatically. Section 5 draws some
conclusions.

2. The Bossa DSL
We introduce the Bossa DSL using excerpts of an imple-
mentation of a Rate Monotonic (RM) scheduling policy [6],
shown in Figure 1. This policy manages a set of periodic pro-
cesses. Process election chooses the runnable process that
has the shortest period. The complete policy and a gram-
mar of the Bossa DSL are available at the Bossa web site,
http://www.emn.fr/x-info/bossa. We focus on the main
features of the language: declarations and event handlers.

Declarations. The declarations of a scheduling policy
define the process attributes, process states, and processes
ordering used by the policy. The process declaration (line
2) lists the policy-specific attributes associated with each
process. For the RM policy, each process is associated with
its period. The states declaration (lines 4-11) lists the
set of process states that are distinguished by the policy.

Each state is associated with a state class (RUNNING, READY,
BLOCKED, or TERMINATED), describing the schedulability of
processes in the state, and an implementation as either a
process variable (process) or a queue (queue). The names of
the states of the RM policy are mostly intuitive. The ready
state is designated as select, indicating that processes are
elected from this state. The computation ended state stores
processes that have completed their computation within the
current period. The ordering criteria (line 14) describes
how to compare two processes in terms of a sequence of
criteria based on the values of their attributes. The RM
policy favors the process with the lowest period.

Event handlers Event handlers describe how a policy
reacts to scheduling-related events that occur in the OS
kernel. Examples of such events include process blocking
and unblocking and the need to elect a new process. Figure 1
shows only the handlers block.* and unblock.preemptive.

Event handlers are parameterized by an event struc-
ture, e, that includes the target process, e.target, af-
fected by the event. The event-handler syntax is based on
that of a subset of C and provides specific constructs and
primitives for manipulating processes and their attributes.
These include constructs for testing the state of a process
(exp in state), testing whether there is any process in a
given state (empty(state)), testing the relative priority of
two processes (exp1 > exp2), and changing the state of a
process (exp => state).

A block.* event occurs when a process blocks. The
corresponding handler (line 16) simply sets the state of the
process to blocked. An unblock.preemptive event occurs
when a process unblocks. The corresponding handler (lines
18-25) checks whether the process is actually blocked, and
if so sets the state of the target process to ready making it
eligible for election. The handler also checks whether there
is a running process (!empty(running)) and if so whether
the target process has a higher priority than this running
process (e.target > running). If both tests are satisfied,
the state of the running process is set to ready, thus causing
the running process to be preempted.

Verification Verification for Bossa focuses on checking
that a Bossa scheduling policy satisfies the scheduling re-
quirements of the target OS. These requirements are OS-
specific and are described by a collection of event types [9].
Event types are described in terms of the state classes and
specify the possible preconditions and corresponding re-
quired postconditions on process states at the time of in-
voking the various event handlers.

We present the event type notation using the type of the
unblock.preemptive event when used with Linux 2.4. The
type is as follows:

[tgt in BLOCKED] -> [tgt in READY]
[p in RUNNING, tgt in BLOCKED] -> [[p,tgt] in READY]
[tgt in BLOCKED] -> [tgt in BLOCKED]
[tgt in RUNNING] -> []
[tgt in READY] -> []

The first three rules treat the case where the target process
is in a state of the BLOCKED state class. Of these, the first two
allow the handler to move the target process to a state of the
READY state class, making the process eligible for election.
The second rule additionally moves the running process to
the READY state class, which causes it to be preempted. In the
third rule, the target process remains in the BLOCKED state
class, but is allowed to change state, e.g. to one representing
a different kind of blocking. The remaining rules consider

the cases where the target process is not actually blocked.
In these cases, the event handler may not perform any state
changes.

It is straightforward to verify that the unblock.preemp-
tive handler presented above satisfies this type. The Bossa
compiler includes a verifier that checks that a scheduling
policy satisfies the event types. This verifier is based on ab-
stract interpretation and uses the various high-level abstrac-
tions found in the Bossa language to infer the source and
destination of state change operations [9].

3. The B method
B is a state-oriented formalism that covers the complete life
cycle of software development. It provides a uniform lan-
guage, the Abstract Machine Notation, to specify, design,
and implement systems. A typical development in B con-
sists of an abstract specification, followed by some refine-
ment steps. The final refinement corresponds to an imple-
mentation. The correctness of the construction is enforced
by the verification of proof obligations associated with each
step of the development.

A specification in B is composed of a set of (abstract)
machines. Each machine has an internal state, and provides
services allowing an external user to access or modify its
state. Syntactically, a machine consists of several clauses
which determine the static and dynamic properties of the
state.

Consider the following excerpt of an abstract machine,
which specifies a simple system that stores a set with at
most one element and provides various set operations:

MACHINE Singleton(ELEM)
VARIABLES elem, elems
INVARIANT elem ∈ ELEM ∧ elems ⊆ {elem}
INITIALISATION elem :∈ ELEM || elems := ∅
OPERATIONS
add(el) , /* the precondition specifies the type of el

and ensures that no elements will be overridden */
PRE el ∈ ELEM ∧ elems = ∅ THEN

elem := el || elems := {el} // B multi assignment
END;
...

END

This machine specifies a family of systems all having the
same abstract properties with respect to the parameter
ELEM. The clause VARIABLES defines the representation
of the state of the machine. The clause INVARIANT con-
strains the domain of these variables. The initial state of the
machine is specified in the INITIALISATION clause. The
services provided by a machine are specified in the clause
OPERATIONS.

The soundness of a machine in B is given by proof obli-
gations which verify that

• The initial state satisfies the invariant.

• The invariant is preserved by the operations.

• The call of an operation must satisfy its precondition.

An abstract specification can be materialized as an im-
plementation by a mechanism of refinement. The abstract
machine acts as the interface of the implementation with re-
spect to client machines. Regardless of the refinement levels,
the user of a machine is always concerned by the variables
and the operations defined at the abstract machine. The in-
variant of a refinement relates the abstract variables to the
concrete ones and is called the “coupling invariant”.

Singleton

Queue

SelectQueue

VoidSet

RmTrans

Classesscheduler

rm

includes

refines

RmTrans_r1

RmTrans_r2

Figure 2. Architecture of the B project

The validity of a refinement is guaranteed by proof obli-
gations: each concrete operation must be simulated by its
abstract operation such that coupling invariant is preserved.

4. Expressing Bossa specifications in B
We now consider how Bossa event types and scheduling poli-
cies can be translated into B machines. The event types are
translated into a B machine that models the abstract behav-
ior of a scheduler. A Bossa scheduling policy is then trans-
lated into several levels of refinement of this abstract sched-
uler. Verifying the correctness of a Bossa scheduling policy
amounts to verifying these refinements, which requires dis-
charging a set of automatically generated proof obligations.
We use the RM policy presented in Section 2 as an example.

Figure 2 represents the architecture of the B project used
in the conformance verification of the RM scheduling policy.

• The Classes machine included by the scheduler ma-
chine defines state classes and the transitions between
them.

• The scheduler machine describes an abstract scheduler
specified by Bossa event types.

• The rm machine describes the RM policy as a refinement
of the machine scheduler.

• The RmTrans machine and its refinements RmTrans r1
and RmTrans r2 describe transitions between rate mono-
tonic policy states.

• The machines Singleton, Queue, SelectQueue and Void-
Set describe the various collections of processes that can
be used by a Bossa policy.

4.1 Encoding the event types

The event types are defined in terms of the Bossa state
classes. The B machine Classes associates each state class
with the collection of processes that it contains. These
collections are defined in terms of an abstract set of processes
(Process), so that conformance proofs will not depend on
the actual set of processes. Each state class is associated
with a disjoint subset of Process. Because Bossa assumes
that the target architecture has only one processor, the
RUNNING state class can contain at most one process. The
Classes machine also defines state transition operations.
These operations either move a process from one class to
another or allow an unbounded number of state changes
between two given state classes.

MACHINE Classes
SETS Process

VARIABLES
Running, Ready, Blocked, Terminated, running

INVARIANT
Running ⊆ Process ∧ Ready ⊆ Process

∧ Blocked ⊆ Process ∧ Terminated ⊆ Process
∧ running ∈ Process
∧ Running ∩ Ready = ∅ ∧ Running ∩ Terminated = ∅
∧ Running ∩ Blocked = ∅
∧ Ready ∩ Terminated = ∅ ∧ Ready ∩ Blocked = ∅
∧ Terminated ∩ Blocked = ∅
∧ (Running 6= ∅ ⇒ Running = {running})
INITIALISATION

Running, Ready, Blocked, Terminated := ∅,∅,∅,∅
|| running :∈ Process // running belongs to Process
OPERATIONS
CBlockedToTerminated(tgt) ,
PRE tgt ∈ Blocked THEN

Blocked := Blocked - {tgt}
|| Terminated := Terminated ∪ {tgt}

END;
...

END

The event types describe the state changes allowed be-
tween the state classes. They are expressed by the scheduler
abstract machine, which includes the Classes machine de-
fined above and an operation for each event. The system to
be built is supposed open and preconditions of the events
specify call conditions.

We illustrate the translation of a set of event types to a B
machine using the rule for unblock.preemptive presented
in Section 2. This rule allows three different behaviors if the
target process is blocked, and specifies additional behaviors
if the target process is running or ready. In the B translation,
SELECT is used to identify the current state classes of relevant
processes and CHOICE expresses the non-determinism.

Unblock_preemptive(tgt) ,
PRE tgt ∈ (Running ∪ Ready ∪ Blocked) THEN
SELECT tgt ∈ Blocked ∧ Running 6= ∅ THEN
CHOICE CRunningBlockedToReadyReady(tgt)
OR CBlockedToReady(tgt)
END

WHEN tgt ∈ Blocked ∧ Running = ∅ THEN
CBlockedToReady(tgt)

WHEN PTRUE THEN skip
END

END

4.2 Encoding a scheduling policy

A scheduling policy is introduced as a refinement of the
abstract scheduler. It redefines the scheduling events using
its own states, which refine the previously introduced state
classes. The management of policy-specific states is intro-
duced gradually in order to factorize some of the proof obli-
gations.

• The first refinement level introduces the representation
of states in terms of collections of processes. In order
to establish the link between policy states and state
classes, the machine Classes is included. Elementary
state transitions are defined and apply both to policy
states and state classes.

• The next refinement level drops the state classes, which
are not used in the implementation. However, this ma-
chine inherits the link between states and state classes
established by the first level.

• The last refinement level introduces the implementation
of state membership.

More details about the B model can be found in an expanded
version of this paper [4].

4.3 Proof automation

The proof obligations generated for the preceding Bossa/B
development are not automatically proved by the provers
available with Atelier B. In the context of our study, some
proof formulae can be instantiated in WS1S (weak second
order logic of one successor). These can be decided auto-
matically [11]. Currently, we use the Mona tool [8] to decide
these proof obligations. More precisely:

• The event type state space consists of one set of pro-
cesses per Bossa class from which given processes can be
removed or inserted. These transitions can be expressed
in WS1S.

• The scheduling policy state space is obtained by splitting
the abstract state classes into disjoint subsets. State
transitions are derived from the Bossa scheduling policy
code. Here again, the refinement relation relating the
abstract and concrete space can be expressed in WS1S.

5. Conclusion
DSLs provide a high-level means of implementing solutions
to complex problems within a given domain. When the do-
main has critical safety or security requirements, verification
of these implementations is essential. In this paper, we have
shown a systematic means of using the B formal method
to verify a process scheduling policy implemented using the
Bossa DSL. This verification covers within a single frame-
work both verification of the scheduler structure, as also pro-
vided by existing Bossa verification tools, and verification of
part of the implementation strategy, which is not covered by
the Bossa verifier. In the development presented here, most
of the work can be reused directly for verification of other
scheduling policies, except for the proofs related to the event
handler definitions themselves (i.e., Section 4.2). However,
using a dedicated decision procedure such as Mona should
help in automating the verification of most of the proof obli-
gations. In future work, we plan to generalize this part of the
development as well, to produce a certified Bossa compiler.
We will also consider how this approach can be applied to
other DSLs.

References
[1] J.-R. Abrial. The B-Book: Assigning programs to meanings.

Cambridge University Press, 1996.

[2] F. Badeau and A. Amelot. Using B as a high level
programming language in an industrial project: Roissy VAL.
In H. Treharne, S. King, M. Henson, and S. Schneider,
editors, ZB 2005: Formal Specification and Development in
Z and B, volume 2215 of Lecture Notes in Computer Science,
pages 298–315. Springer-Verlag, Guildford, UK, Apr. 2005.

[3] P. Behm, P. Desforges, and J.-M. Meynadier. Météor : An
industrial success in formal development. In D. Bert, editor,
B’98: second Int. B Conference, Montpellier, volume 1393
of Lecture Notes in Computer Science, page 26. Springer-
Verlag, 1998.

[4] J.-P. Bodeveix, M. Filali, J. Lawall, and G. Muller.
Formal methods meet domain specific languages. In Fifth
International Conference on Integrated Formal Methods
(IFM), Eindhoven Netherlands, Lecture Notes in Computer
Science. Springer-Verlag, Nov. 2005. (to appear).

[5] C. Cortes, K. Fisher, D. Pregibon, A. Rogers, and F. Smith.
Hancock: A language for extracting signatures from data

streams. In Proceedings of the Sixth International Confer-
ence on Knowledge Discovery and Data Mining, pages 9–17,
2000.

[6] F. Cottet, J. Delacroix, C. Kaiser, and Z. Mammeri.
Scheduling in Real-Time Systems. Wiley, West Sussex,
England, 2002.

[7] C. Elliott. An embedded modeling language approach to in-
teractive 3d and multimedia animation. IEEE Transactions
on Software Engineering, 25(3):291–308, 1999.

[8] J. Henriksen, J. Jensen, M. Jorgensen, N. Klarlund,
R. Paige, T. Rauhe, and A. Sandholm. Mona: Monadic
second-order logic in practice. In Workshop on Tools and
Algorithms for the Construction and Analysis of Systems,
http://www.brics.dk/∼mona, pages 58–73, Aarhus, May
1995.

[9] J. Lawall, A.-F. Le Meur, and G. Muller. On designing
a target-independent DSL for safe OS process-scheduling
components. In Third Int. Conference on Generative
Programming and Component Engineering (GPCE’04),
volume 3286 of Lecture Notes in Computer Science, pages
436–455, Vancouver, October 2004. Springer-Verlag.

[10] F. Mérillon, L. Réveillère, C. Consel, R. Marlet, and
G. Muller. Devil: An IDL for hardware programming. In
Proceedings of the Fourth USENIX Symposium on Operating
Systems Design and Implementation (OSDI), pages 17–30,
San Diego, CA, Oct. 2000.

[11] W. Thomas. Automata on infinite objects. In J. Leeuwen,
editor, Handbook of Theoretical Computer Science, pages
133–192. MIT Press, 1990.

This work was supported in part by the CORSS:“Composition
et raffinement de systèmes sûrs” project of program “ACI:
Sécurité Informatique” supported by the French Ministry of
Research and New Technologies, and in part by the Danish
Research Council, grant number 21-05-0545.

